19 resultados para Parallel computing, Virtual machine, Composition, Determinism, Abstraction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
Esperimenti sulla virtualizzazione del laboratorio informatico della facoltà, che attraverso migrazioni di virtual machine, consentirebbe il risparmio energetico grazie allo spegnimento di alcune macchine fisiche.
Resumo:
The technology of partial virtualization is a revolutionary approach to the world of virtualization. It lies directly in-between full system virtual machines (like QEMU or XEN) and application-related virtual machines (like the JVM or the CLR). The ViewOS project is the flagship of such technique, developed by the Virtual Square laboratory, created to provide an abstract view of the underlying system resources on a per-process basis and work against the principle of the Global View Assumption. Virtual Square provides several different methods to achieve partial virtualization within the ViewOS system, both at user and kernel levels. Each of these approaches have their own advantages and shortcomings. This paper provides an analysis of the different virtualization methods and problems related to both the generic and partial virtualization worlds. This paper is the result of an in-depth study and research for a new technology to be employed to provide partial virtualization based on ELF dynamic binaries. It starts with a mild analysis of currently available virtualization alternatives and then goes on describing the ViewOS system, highlighting its current shortcomings. The vloader project is then proposed as a possible solution to some of these inconveniences with a working proof of concept and examples to outline the potential of such new virtualization technique. By injecting specific code and libraries in the middle of the binary loading mechanism provided by the ELF standard, the vloader project can promote a streamlined and simplified approach to trace system calls. With the advantages outlined in the following paper, this method presents better performance and portability compared to the currently available ViewOS implementations. Furthermore, some of itsdisadvantages are also discussed, along with their possible solutions.
Resumo:
Le nuove teorie di rete come Software Defined Networking Network Function Virtualization, insieme alle teorie Cognitive/Autonomics consentono di abilitare scenari futuri “disruptive” di rete. Lo scopo di questa tesi è quello di esplorare questi scenari futuri e di capire il ruolo della migrazione di funzioni di rete, sotto forma di Virtual Machine. Si vuole affrontare la migrazione di Virtual Machine dal punto di vista delle performance, ma anche come strumento di gestione delle risorse in uno scenario di rete d'accesso autonomica.
Resumo:
The efficient emulation of a many-core architecture is a challenging task, each core could be emulated through a dedicated thread and such threads would be interleaved on an either single-core or a multi-core processor. The high number of context switches will results in an unacceptable performance. To support this kind of application, the GPU computational power is exploited in order to schedule the emulation threads on the GPU cores. This presents a non trivial divergence issue, since GPU computational power is offered through SIMD processing elements, that are forced to synchronously execute the same instruction on different memory portions. Thus, a new emulation technique is introduced in order to overcome this limitation: instead of providing a routine for each ISA opcode, the emulator mimics the behavior of the Micro Architecture level, here instructions are date that a unique routine takes as input. Our new technique has been implemented and compared with the classic emulation approach, in order to investigate the chance of a hybrid solution.
Resumo:
In questo lavoro si indaga la possibilita' di includere lo stack TCP-IP NetBSD, estratto come libreria dinamica ed eseguito all'interno di un kernel rump, come sottomodulo di rete della System Call Virtual Machine UMView di Virtual Square. Il risultato ottenuto consiste in umnetbsd, il modulo che ne dimostra la fattibilita', e libvdeif, una libreria per connettere kernel rump a switch VDE.
Resumo:
In questa tesi sono stati apportati due importanti contributi nel campo degli acceleratori embedded many-core. Abbiamo implementato un runtime OpenMP ottimizzato per la gestione del tasking model per sistemi a processori strettamente accoppiati in cluster e poi interconnessi attraverso una network on chip. Ci siamo focalizzati sulla loro scalabilità e sul supporto di task di granularità fine, come è tipico nelle applicazioni embedded. Il secondo contributo di questa tesi è stata proporre una estensione del runtime di OpenMP che cerca di prevedere la manifestazione di errori dati da fenomeni di variability tramite una schedulazione efficiente del carico di lavoro.
Resumo:
Uno dei principali settori di studio nell’ambito della visione artificiale riguarda lo sviluppo e la continua ricerca di tecniche e metodologie atte alla ricostruzione di ambienti 3D. Una di queste è il Kinect Fusion, la quale utilizza il dispositivo Kinect per catturare ed elaborare informazioni provenienti da mappe di profondità relative a una particolare scena, per creare un modello 3D dell’ambiente individuato dal sensore. Il funzionamento generale del sistema “Kinect Fusion” consiste nella ricostruzione di superfici dense attraverso l’integrazione delle informazioni di profondità dei vari frame all’interno di un cubo virtuale, che a sua volta viene partizionato in piccoli volumi denominati voxel, e che rappresenta il volume della scena che si intende ricostruire. Per ognuno di tali voxel viene memorizzata la distanza (TSDF) rispetto alla superficie più vicina. Durante lo svolgimento di questo lavoro di tesi ci si è concentrati innanzitutto nell’analisi dell’algoritmo Voxel Hashing, una tecnica che mira a rendere l'algoritmo Kinect Fusion scalabile, attraverso una migliore gestione della struttura dati dei voxel allocando questi ultimi all'interno di una tabella di hash solo se strettamente necessario (TSDF inferiore a una soglia). In una prima fase del progetto si è quindi studiato in dettaglio il funzionamento di suddetta tecnica, fino a giungere alla fase della sua implementazione all’interno di un framework di ricostruzione 3D, basato su Kinect Fusion; si è quindi reso il sistema realizzato più robusto tramite l’applicazione di diverse migliorie. In una fase successiva sono stati effettuati test quantitativi e qualitativi per valutarne l'efficienza e la robustezza. Nella parte finale del progetto sono stati delineati i possibili sviluppi di future applicazioni.
Resumo:
Questo lavoro di tesi ha visto come obiettivo finale quello di realizzare una se- rie di attacchi, alcuni di questi totalmente originali, ai protocolli della famiglia Time-Sensitive Networking (TSN) attraverso lo sviluppo di un’infrastruttura virtualizzata. L’infrastruttura è stata costruita e progettata utilizzando mac- chine virtuali con Quick EMUlator (QEMU) come strato di virtualizzazione ed accelerate attraverso Kernel-based Virtual Machine (KVM). Il progetto è stato concepito come Infrastrucutre as Code (IaC), attraverso l’ausilio di Ansible e alcuni script shell utilizzati come collante per le varie parti del progetto.
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
La prima parte del documento contiene una breve introduzione al mondo mobile, cloud computing e social network. La seconda parte si concentra sulla progettazione di un'applicazione per i dispositivi mobili usando le tecnologie Facebook e Parse. Infine, viene implementata un'applicazione Android usando le techiche descritte in precedenza.
Resumo:
Il documento tratta la famiglia di metodologie di allenamento e sfruttamento delle reti neurali ricorrenti nota sotto il nome di Reservoir Computing. Viene affrontata un'introduzione sul Machine Learning in generale per fornire tutti gli strumenti necessari a comprendere l'argomento. Successivamente, vengono dati dettagli implementativi ed analisi dei vantaggi e punti deboli dei vari approcci, il tutto con supporto di codice ed immagini esplicative. Nel finale vengono tratte conclusioni sugli approcci, su quanto migliorabile e sulle applicazioni pratiche.
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.
Resumo:
The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.