5 resultados para Pack transportation.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this research is to analyze the transport system and its subcomponents in order to highlight which are the design tools for physical and/or organizational projects related to transport supply systems. A characteristic of the transport systems is that the change of their structures can recoil on several entities, groups of entities, which constitute the community. The construction of a new infrastructure can modify both the transport service characteristic for all the user of the entire network; for example, the construction of a transportation infrastructure can change not only the transport service characteristics for the users of the entire network in which it is part of, but also it produces economical, social, and environmental effects. Therefore, the interventions or the improvements choices must be performed using a rational decision making approach. This approach requires that these choices are taken through the quantitative evaluation of the different effects caused by the different intervention plans. This approach becomes even more necessary when the decisions are taken in behalf of the community. Then, in order to understand how to develop a planning process in Transportation I will firstly analyze the transport system and the mathematical models used to describe it: these models provide us significant indicators which can be used to evaluate the effects of possible interventions. In conclusion, I will move on the topics related to the transport planning, analyzing the planning process, and the variables that have to be considered to perform a feasibility analysis or to compare different alternatives. In conclusion I will perform a preliminary analysis of a new transit system which is planned to be developed in New York City.
Resumo:
Global climate change in recent decades has strongly influenced the Arctic generating pronounced warming accompanied by significant reduction of sea ice in seasonally ice-covered seas and a dramatic increase of open water regions exposed to wind [Stephenson et al., 2011]. By strongly scattering the wave energy, thick multiyear ice prevents swell from penetrating deeply into the Arctic pack ice. However, with the recent changes affecting Arctic sea ice, waves gain more energy from the extended fetch and can therefore penetrate further into the pack ice. Arctic sea ice also appears weaker during melt season, extending the transition zone between thick multi-year ice and the open ocean. This region is called the Marginal Ice Zone (MIZ). In the Arctic, the MIZ is mainly encountered in the marginal seas, such as the Nordic Seas, the Barents Sea, the Beaufort Sea and the Labrador Sea. Formed by numerous blocks of sea ice of various diameters (floes) the MIZ, under certain conditions, allows maritime transportation stimulating dreams of industrial and touristic exploitation of these regions and possibly allowing, in the next future, a maritime connection between the Atlantic and the Pacific. With the increasing human presence in the Arctic, waves pose security and safety issues. As marginal seas are targeted for oil and gas exploitation, understanding and predicting ocean waves and their effects on sea ice become crucial for structure design and for real time safety of operations. The juxtaposition of waves and sea ice represents a risk for personnel and equipment deployed on ice, and may complicate critical operations such as platform evacuations. The risk is difficult to evaluate because there are no long-term observations of waves in ice, swell events are difficult to predict from local conditions, ice breakup can occur on very short time-scales and wave-ice interactions are beyond the scope of current forecasting models [Liu and Mollo-Christensen, 1988,Marko, 2003]. In this thesis, a newly developed Waves in Ice Model (WIM) [Williams et al., 2013a,Williams et al., 2013b] and its related Ocean and Sea Ice model (OSIM) will be used to study the MIZ and the improvements of wave modeling in ice infested waters. The following work has been conducted in collaboration with the Nansen Environmental and Remote Sensing Center and within the SWARP project which aims to extend operational services supporting human activity in the Arctic by including forecast of waves in ice-covered seas, forecast of sea-ice in the presence of waves and remote sensing of both waves and sea ice conditions. The WIM will be included in the downstream forecasting services provided by Copernicus marine environment monitoring service.