5 resultados para PROSTHESIS

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, the mechanical characterization of bone segments has been seen as a fundamental key to understanding how the distribution of physiological loads works on the bone in everyday life, and the resulting structural deformations. Therefore, characterization allows to obtain the main load directions and, consequently, to observe the structural lamellae of the bone disposal, in order to recreate a prosthesis using artificial materials that behave naturally. This thesis will expose a modular system which provides the mechanical characterization of bone in vitro segment, with particular attention to vertebrae, as the current object of study and research in the lab where I did my thesis work. The system will be able to acquire and process all the appropriately conditioned signals of interest for the test, through dedicated hardware and software architecture, with high speed and high reliability. The aim of my thesis is to create a system that can be used as a versatile tool for experimentation and innovation for future tests of the mechanical characterization of biological components, allowing a quantitative and qualitative assessment of the deformation in analysis, regardless of anatomical regions of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years the number of shoulder arthroplasties has been increasing. Simultaneously the study of their shape, size and strength and the reasons that bring to a possible early explantation have not yet been examined in detail. The research carried out directly on explants is practically nonexistent, this means a poor understanding of the mechanisms leading the patient and so the surgeon, to their removal. The analysis of the mechanisms which are the cause of instability, dislocation, broken, fracture, etc, may lead to a change in the structure or design of the shoulder prostheses and lengthen the life of the implant in situ. The idea was to analyze 22 explants through three methods in order to find roughness, corrosion and surface wear. In the first method, the humeral heads and/or the glenospheres were examined with the interferometer, a machine that through electromagnetic waves gives information about the roughness of the surfaces under examination. The output of the device was a total profile containing both roughness and information on the waves (representing the spatial waves most characteristic on the surface). The most important value is called "roughness average" and brings the average value of the peaks found in the local defects of the surfaces. It was found that 42% of the prostheses had considerable peak values in the area where the damage was caused by the implant and not only by external events, such as possibly the surgeon's hand. One of the problems of interest in the use of metallic biomaterials is their resistance to corrosion. The clinical significance of the degradation of metal implants has been the purpose of the second method; the interaction between human body and metal components is critical to understand how and why they arrive to corrosion. The percentage of damage in the joints of the prosthetic components has been calculated via high resolution photos and the software ImageJ. The 40% and 50% of the area appeared to have scratches or multiple lines due to mechanical artifacts. The third method of analysis has been made through the use of electron microscopy to quantify the wear surface in polyethylene components. Different joint movements correspond to different mechanisms of damage, which were imprinted in the parts of polyethylene examined. The most affected area was located mainly in the side edges. The results could help the manufacturers to modify the design of the prostheses and thus reduce the number of explants. It could also help surgeons in choosing the model of the prosthesis to be implanted in the patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The revision hip arthroplasty is a surgical procedure, consisting in the reconstruction of the hip joint through the replacement of the damaged hip prosthesis. Several factors may give raise to the failure of the artificial device: aseptic loosening, infection and dislocation represent the principal causes of failure worldwide. The main effect is the raise of bone defects in the region closest to the prosthesis that weaken the bone structure for the biological fixation of the new artificial hip. For this reason bone reconstruction is necessary before the surgical revision operation. This work is born by the necessity to test the effects of bone reconstruction due to particular bone defects in the acetabulum, after the hip prosthesis revision. In order to perform biomechanical in vitro tests on hip prosthesis implanted in human pelvis or hemipelvis a practical definition of a reference frame for these kind of bone specimens is required. The aim of the current study is to create a repeatable protocol to align hemipelvic samples in the testing machine, that relies on a reference system based on anatomical landmarks on the human pelvis. In chapter 1 a general overview of the human pelvic bone is presented: anatomy, bone structure, loads and the principal devices for hip joint replacement. The purpose of chapters 2 is to identify the most common causes of the revision hip arthroplasty, analysing data from the most reliable orthopaedic registries in the world. Chapter 3 presents an overview of the most used classifications for acetabular bone defects and fractures and the most common techniques for acetabular and bone reconstruction. After a critical review of the scientific literature about reference frames for human pelvis, in chapter 4, the definition of a new reference frame is proposed. Based on this reference frame, the alignment protocol for the human hemipelvis is presented as well as the statistical analysis that confirm the good repeatability of the method.