4 resultados para POLY(ETHYLENE OXIDE) BLOCK

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block copolymers of poly(lactide) and poly(carbonate) were synthetized in three different compositions and characterized by 1H-NMR and ATR analyses. The compatibilization effect of this copolymers on 80/20 (w/w%) PLA/PCL blend was evaluated. SEM micrographs show that all the blends exhibit the typical sea-island morphology characteristic of immiscible blends with PCL finely dispersed in droplets on a PLA matrix. Upon the addiction of the copolymers a reduction on PCL droplets size is observable. At the same time, a Tg depression of the PLA phase is detected when the copolymers are added in the blend. These results indicate that these copolymers are effective as compatibilizers. The copolymer that acts as the best compatibilizer is the one characterized by the same amount of PLA and PC as repeating units. As result, in the blend containing this copolymer PLA phase exhibits the highest spherulitic growth rate. An analyses on PLA phase crystallization behaviour from the glassy state within the blends was evaluated by DSC experiments. Isothermal cold crystallization of the PLA phase is enhanced up an order of magnitude upon the blending with PCL. Annealing experiments demonstrated that the crystallization of the PCL phase induces the formation of active nuclei in PLA when cooled above cooled below Tg. When the crystallization rate of PCL is retarded, a reduction on PLA nucleation is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the deviations in the solubility of CO2, CH4, and N2 at 30 °c in the mixed gases (CO2/CH4) and (CO2/N2) from the pure gas behavior were studied using the dual-mode model over a wide range of equilibrium composition and pressure values in two glassy polymers. The first of which was PI-DAR which is the polyimide formed by the reaction between 4, 6-diaminoresorcinol dihydrochloride (DAR-Cl) and 2, 2’-bis-(3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). The other glassy polymer was TR-DAR which is the corresponding thermally rearranged polymer of PI-DAR. Also, mixed gas sorption experiments for the gas mixture (CO2/CH4) in TR-DAR at 30°c took place in order to assess the degree of accuracy of the dual-mode model in predicting the true mixed gas behavior. The experiments were conducted on a pressure decay apparatus coupled with a gas chromatography column. On the other hand, the solubility of CO2 and CH4 in two rubbery polymers at 30⁰c in the mixed gas (CO2/CH4) was modelled using the Lacombe and Sanchez equation of state at various values of equilibrium composition and pressure. These two rubbery polymers were cross-linked poly (ethylene oxide) (XLPEO) and poly (dimethylsiloxane) (PDMS). Moreover, data about the sorption of CO2 and CH4 in liquid methyl dietahnolamine MDEA that was collected from literature65-67 was used to determine the deviations in the sorption behavior in the mixed gas from that in the pure gases. It was observed that the competition effects between the penetrants were prevailing in the glassy polymers while swelling effects were predominant in the rubbery polymers above a certain value of the fugacity of CO2. Also, it was found that the dual-mode model showed a good prediction of the sorption of CH4 in the mixed gas for small pressure values but in general, it failed to predict the actual sorption of the penetrants in the mixed gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Phenoxyethanol (ethylene glycol monophenyl ether) is used as solvent for cellulose acetate, dyes, inks, and resins; it is a synthetic intermediate in the production of plasticizers, pharmaceuticals, and fragrances. Phenoxyethanol is obtained industrially by reaction of phenol with ethylene oxide, in the presence of an homogeneous alkaline catalyst, typically sodium hydroxide. The yield is not higher than 95-96%, because of the formation of polyethoxylated compounds. However, the product obtained may not be acceptable for use in cosmetic preparations and fragrance formulations, due to presence of a pungent “metallic” odor which masks the pleasant odor of the ether, deriving from residual traces of the metallic catalyst. Here we report a study aimed at using ethylene carbonate in place of ethylene oxide as the reactant for phenoxyethanol synthesis; the use of carbonates as green nucleophilic reactants is an important issue in the context of a modern and sustainable chemical industry. Moreover, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents, and used heterogeneous basic catalysts. We carried out the reaction by using various molar ratios between phenol and ethylene carbonate, at temperatures ranging between 180 and 240°C, with a Na-mordenite catalyst. Under specific conditions, it was possible to obtain total phenol conversion with >99% yield to phenoxyethanol in few hours reaction time, using a moderate excess of ethylene carbonate. Similar results, but with longer reaction times, were obtained using a stoichiometric feed ratio of reactants. One important issue of the research was finding conditions under which the leaching of Na was avoided, and the catalyst could be separated and reused for several reaction batches.