4 resultados para POLY(2-HYDROXYETHYL METHACRYLATE) HYDROGELS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main research topic of the present master thesis consisted in the modification and electrochemical testing of inkjet printed graphene electrodes with a thin polymeric hydrogel layer made of cross-linked poly(N-isopropylacrylamide) (PNIPAAM) acting as a functional layer to fabricate selective sensors. The first experimental activities dealt with the synthesis of the polymeric hydrogel and the modification of the active surface of graphene sensors through photopolymerization. Simultaneous inkjet printing and photopolymerization of the hydrogel precursor inks onto graphene demonstrated to be the most effective and reproducible technique for the modification of the electrode with PNIPAAM. The electrochemical performance of the modified electrodes was tested through cyclic voltammetry. Voltammograms with standard redox couples with either positive, neutral or negative charges, suggested an electrostatic filtering effect by the hydrogel blocking negatively charged redox species in near neutral pH electrolyte solutions from reaching the electrode surface. PNIPAAM is a known thermo-responsive polymer, but the variation of temperature did not influence the filtering properties of the hydrogels for the redox couples studied. However, a variation of the filter capacity of the material was observed at pH 2 in which the PNIPAAM hydrogel, most likely in protonated form, became impermeable to positively charged redox species and permeable to negatively charged species. Finally, the filtering capacity of the electrodes modified with PNIPAAM was evaluated for the electrochemical determination of analytes in presence of negatively charge potential interferents, such as antioxidants like ascorbic acid. The outcome of the final experiments suggested the possibility to use the inkjet-printed PNIPAAM thin layer for electroanalytical applications as an electrostatic filter against interferents of opposite charges, typically present in complex matrices, such as food and beverages.
Resumo:
Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces.
Resumo:
During the past years, the considerable need in the domain of communications for more potent photonic devices has focused the research activities into the nonlinear optical (NLO) materials which can be used for modern optical switches. In this regard, a lot of research activities are focused on the organic materials and conjugated polymers which offer more advantages compared to the inorganic ones. On this matter, poly(3-alkylthiophene) (P3AT), an organic conjugated polymer, can be investigated as potential optical material with in particular the focus on the NLO properties such as the first- and second-hyperpolarizability, β and γ respectively. The activities carried out at the Laboratory of Polymer Synthesis of the KU Leuven, during the master's thesis work, focused on the study of conjugated polymers in order to evaluate their NLO properties for the future purpose of applications in optical systems. In particular, three series of polythiophenes functionalized with an alkyl side chain in the 3-position were synthesized: poly(3-hexylthiophene) (P3HT), poly[3-(2-ethylhexyl)thiophene] (P3EHT) and random copolymer of the two regio-isomers of P3HT. They were made in order to study the influence of molar mass, branching and regio-irregularity on the γ-value. The Kumada catalyst transfer condensative polymerization (KCTCP) and the Pd(RuPhos)-protocol were used for the polymerizations in order to have control over the molar mass of the growing chain and consequently to obtain well-defined and reproducible materials. The P3AT derivatives obtained were characterized by gel permeation chromatography (GPC), spectroscopic techniques (1H-NMR, UV-Vis) and the γ-value was investigated using the third-harmonic scattering (THS) technique. In particular, the THS technique is useful to investigate the optical behavior of the series of polymers in solution.
Resumo:
Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.