2 resultados para PLA(2) inhibitors
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work study proposes novel and natural inhibitors of the enzyme urease, as more sustainable alternatives to the synthetic ones. Specifically, Deep Eutectic Solvents (DES) were used as an extractants and carriers of polyphenols extracted from waste biomass enriched in antioxidant compounds. The polyphenolic extracts with DES have been tested on lab-scale experiments to verify their effect on the reduction of the hydrolysis rate of urea-based fertilizers catalyzed by urease. The phytotoxicity and the soil ecotoxicity of DES and polyphenols formulations were then tested. DES resulted promising in terms of polyphenols extraction ability from biomass and as carriers of bioactive compounds in the agricultural field, showing non-damaging effects on plants (Avena sativa) and microarthropods in soil.
Resumo:
Given the rise in the emergence of new composite materials, their multifunctional properties, and possible applications in simple and complex structural components, there has been a need to unravel the characterization of these materials. The possibility of printing these conductive composite materials has opened a new area in the design of structural components which can conduct, transmit, and modulate electric signals with no limitation from complex geometry. Although several works have researched the behaviour of polymeric composites due to the immediate growth, however, the electrothermal behaviour of the material when subjected to varying AC applied voltage (Joule’s effect) has not been thoroughly researched. This study presents the characterization of the electrothermal behaviour of conductive composites of a polylactic acid matrix reinforced with conductive carbon black particles (CB-PLA). An understanding of this behaviour would contribute to the improved work in additive manufacturing of functional electro-mechanical conductive materials with potential application in energy systems, bioelectronics, etc. In this study, the electrothermal interplay is monitored under applied AC voltage, varying lengths, and filament printing orientations (longitudinal, oblique, and transverse). Each sample was printed using the fused deposition modeling technique such that each specimen has three different lengths (1L, 2L, 2.75L). To this end, deductions were made on properties that affect composite’s efficiency and life expectancy. The result of this study shows a great influence of printing orientation on material properties of 3D printed conductive composites of CB-PLA. The result also identifies the contribution of AC applied voltage to composites' stabilization time. This knowledge is important to provide experimental background for components' electrothermal interplay, estimate possible degradation and operating limits of composite structures when used in applications.