6 resultados para PHYLOGEOGRAPHY

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family Hyalidae comprises more than one hundred species, distributed worldwide. They are common and abundant in the littoral and shallow sublittoral habitats and they play an important role in the coastal food chain. Most studies about this family were dealing with taxonomy and ecology, while very little is known about phylogenetic relationship among genera and species. In the present study we aim to achieve the first approach of the phylogenetic patterns of this family in NE Atlantic Ocean and Mediterranean Sea, and to perform the first insight into the phylogeography Apohyale prevostii along both the North Atlantic coasts. In order to do that, eight species belonging to the genera Apohyale, Hyale, Serejohyale and Protohyale were investigated using the mitochondrial COI-5P barcode region. Specimens were collected along European and Moroccan Atlantic rocky shores, including Iceland, the British Isles, Macaronesia and in the Mediterranean Sea. Sequences of A. prevostii, from the NW Atlantic Ocean, available in BOLD and GenBank, were retrieved. As expected, phylogenetic analyses showed highly-divergent clades, clearly discriminating among different species clusters, confirming their morphology-based identifications. Although, within A. perieri, A. media, A. stebbingi, P. (Protohyale) schmidtii and S. spinidactylus, high genetic diversity was found, revealing putative cryptic species. The clade of A. prevostii and A. stebbingi appears well supported and divided from the other two congeneric species, and P. (Protohyale) schmidtii shows a basal divergence. The north-western Atlantic coasts were recently colonized by A. prevostii after the last glacial maximum from the European populations showing also a common haplotype in every population analysed. The use of the COI-5P as DNA barcode provided a good tool to underline the necessity of a revision of this emblematic family, as well as to discern taxonomically the possible new species flagged with this molecular device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population genetic and phylogeography of two common mediterranean species were studied in 10 localities located on the coasts of Toscana, Puglia and Calabria. The aim of the study was to verify the extent of genetic breaks, in areas recognized as boundaries between Mediterranean biogeographic sectors. From about 100 sequences obtained from the mitochondrial Cytochrome Oxidase subunit I (COI) gene of Halocynthia papillosa and Hexaplex trunculus genetic diversity, genetic structure at small and large distances and demographic history of both specieswere analyzed. No evidences of genetic breaks were found for the two species in Toscana and Puglia. The genetic structure of H. trunculus evidences the extent of a barrier to gene flow localized in Calabria, which could be represented by the Siculo-Tunisian Strait and the Strait of Messina. The observed patterns showed similar level of gene flow at small distances in both species, although the two species have different larval ecology. These results suggest that other factors, such as currents, local dynamics and seasonal temperatures, influence the connectivity along the Italian peninsula. The geographic distribution of the haplotypes shows that H. papillosacould represent a single genetic pool in expansion, whereas H. trunculus has two distinct genetic pools in expansion. The demographic pattern of the two species suggests that Pleistocene sea level oscillations, in particular of the LGM, may have played a key role in shaping genetic structure of the two species. This knowledge provides basic information, useful for the definition of management plans, or for the design of a network of marine protected areas along the Italian peninsula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focused on the role of oceanographic discontinuities and the presence of transitional areas in shaping the population structure and the phylogeography of the Raja miraletus species complex, coupled with the test of the effective occurrence of past speciation events. The comparisons between the Atlantic African and the North-Eastern Atlantic-Mediterranean geographic populations were unravelled using both Cytochrome Oxidase I and eight microsatellite loci. This approach guaranteed a robust dataset for the identification of a speciation event between the Atlantic African clade, corresponding to the ex Raja ocellifera nominal species, and the NE Atlantic-Mediterranean R. miraletus clade. As a matter of fact, the origin of the Atlantic Africa and the NE Atlantic-Mediterranean deep split dated about 11.74MYA and was likely due to the synergic influence currents and two upwelling areas crossing the Western African Waters. Within the Mediterranean Sea, particular attention was also paid to the transitional area represented by Adventura and Maltese Bank, that might have contributed in sustaining the connectivity of the Western and the Eastern Mediterranean geographical populations. Furthermore, the geology of the easternmost part of Sicily and the geo-morphological depression of the Calabrian Arc could have driven the differentiation of the Eastern Mediterranean Sea. Although bathymetric and oceanographic discontinuity could represent barriers to dispersal and migration between Eastern and Western Mediterranean samples, a clear and complete genetic separation among them was not detected. Results produced by this work identified a speciation event defining Raja ocellifera and R. miraletus as two different species, and describing the R. miraletus species complex as the most ancient cryptic speciation event in the family Rajidae, representing another example of how strictly connected the environment, the behavioural habits and the evolutionary and ecologic drivers are.