5 resultados para PHOSPHINE ADDUCTS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis is the result of the study of two reactions leading to the formation of important heterocyclic compounds of potential pharmaceutical interest. The first study concerns the reaction of (1,3)-dipolar cycloaddition between nitrones and activated olefins by hydrogen bond catalysis of thioureas derivatives leading to the formation of a five-membered cyclic adducts, an interesting and strategic synthetic intermediate, for the synthesis of benzoazepine. The second project wants to explore the direct oxidative C(sp3)-H α-alkylation of simple amides with subsequent addition of an olefin and cyclization in order to obtain the corresponding oxazine. Both reactions are still under development.
Resumo:
The multimodal biology activity of ergot alkaloids is known by humankind since middle ages. Synthetically modified ergot alkaloids are used for the treatment of various medical conditions. Despite the great progress in organic syntheses, the total synthesis of ergot alkaloids remains a great challenge due to the complexity of their polycyclic structure with multiple stereogenic centres. This project has developed a new domino reaction between indoles bearing a Michael acceptor at the 4 position and nitroethene, leading to potential ergot alkaloid precursors in highly enantioenriched form. The reaction was optimised and applied to a large variety of substrate with good results. Even if unfortunately all attempts to further modify the obtained polycyclic structure failed, it was found a reaction able to produce the diastereoisomer of the polycyclic product in excellent yields. The compounds synthetized were characterized by NMR and ESIMS analysis confirming the structure and their enantiomeric excess was determined by chiral stationary phase HPLC. The mechanism of the reaction was evaluated by DFT calculations, showing the formation of a key bicoordinated nitronate intermediate, and fully accounting for the results observed with all substrates. The relative and absolute configuration of the adducts were determined by a combination of NMR, ECD and computational methods.
Resumo:
High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.
Resumo:
Ruthenium complexes have proved to exhibit antineoplastic activity related to the interaction of metal ion with DNA nucleobases. It is indeed of great interest to provide new insights on theses cutting-edge studies, such as the identification of distinct coordinative modes of DNA binding sites. During the investigation on the reaction between [(PPh3)3Ru(CO)(H)2], 1, and the Thymine Acetic Acid (THA) as model for nucleobases, we identified an unstable monohapto hydride acetate complex 2, which rapidly evolves into elusive intermediates whose nature was evidenced by NMR spectra and DFT calculations. We obtained crystals of [(PPh3)2Ru(CO)(k1-THA)(k2-THA)] 17, and [Ru(CO)(PPh3)2(k2-N,O)-[THA(A)];(k1-O)[THA(B)]2 18, phosphine ligands assuming cis conformation. The thesis deals on the analogue reactions of 1 with acetic acid by varying different parameters and operating conditions. The reaction yields to the hydride dihapto-acetate [(PPh3)2RuH(CO)(k2-Ac)] 8 through the related meridian monohapto, by releasing of phosphine ligand. However, the reaction yields a mixture of compounds, in which the dihapto hydride complex 8 is prevailing in any cases and does not provide any disclosure for the proposed mechanistic aspects. The reaction with two equivalents of acetic acid, affords the complex [(PPh3)2Ru(CO)(k1-Ac)(k2-Ac)] 11, exhibiting mutual trans:cis locations in 2:1 ratio for the phosphine. Such evidence agrees with the results obtained DFT calculations in vacuo, whereas it is in contrast with those obtained with the THA. Therefore we can inferred that the products obtained from the latter reaction is intermolecularly ruled by the hydrogen binding interactions between the functions [-NH•••(O)C-] in the two coordinated thymine ligands.
Resumo:
The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.