2 resultados para Out-of-Africa Hypothesis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In my thesis, I tested the hypothesis that the diversification of the Eastern Atlantic skate faunas arose through vicariance rather than dispersal, using combined approach of molecular phylogeny reconstruction and zoogeography (namely historical biogeography). This analyses have been carried out independently on four Rajidae genera belonging to two different tribes: Rajini (Raja and Dipturus) and Amblyrajini (Rajella and Leucoraja). These taxa were selected because they displayed high species diversity and richness of endemic species in the Eastern Atlantic and Mediterranean. The verification of this hypothesis was carried out by reconstructing the best phylogenetic relationships among four genera and 26 species (including several endemism) based on mtDNA and nuDNA gene variation and several statistical approaches. Divergence times of taxa have been estimated based on molecular clock and fossil calibration to explain evolutionary patterns in the context of geological framework. Main issues are (i) the evidence that Eastern Atlantic skate evolution and displacement of species diversity occurred from pulsed geographical speciation (i.e. repeated series of parallel and independent speciation events) started in the Late Eocene-Early Miocene and they have occurred prevalently during Miocene; (ii) such relatively ancient origin of diversification has been allowed the sympatric displacement and evolution of several congeneric taxa likely because they have accumulated huge differences in the genomic and physiological/behavioural phenotypic traits; (iii) recently diverged sister species and taxa showed allopatric or parapatric evolution by the presence of oceanographic or hydrogeographical barriers which likely prevent large mixing between parapatric sister species.
Resumo:
The main purpose of ultrarelativistic heavy-ion collisions is the investigation of the QGP. The ALICE experiment situated at the CERN has been specifically designed to study heavy-ion collisions for centre-of-mass energies up to 5.5 per nucleon pair. Extended particle identification capability is one of the main characteristics of the ALICE experiment. In the intermediate momentum region (up to 2.5 GeV/c for pi/K and 4 GeV/c for K/p), charged particles are identified in the ALICE experiment by the Time of Flight (TOF) detector. The ALICE-TOF system is a large-area detector based on the use of Multi-gap Resistive Plate Chamber (MRPC) built with high efficiency, fast response and intrinsic time resolution better than 40 ps. This thesis work, developed with the ALICE-TOF Bologna group, is part of the efforts carried out to adapt the read-out of the detector to the new requirements after the LHC Long Shutdown 2. Tests on the feasibility of a new read-out scheme for the TOF detector have been performed. In fact, the achievement of a continuous read-out also for the TOF detector would not be affordable if one considers the replacement of the TRM cards both for hardware and budget reasons. Actually, the read-out of the TOF is limited at 250 kHz i.e. it would be able to collect up to just a fourth of the maximum collision rate potentially achievable for pp interactions. In this Master’s degree thesis work, I discuss a different read-out system for the ALICE-TOF detector that allows to register all the hits at the interaction rate of 1 MHz foreseen for pp interactions after the 2020, by using the electronics currently available. Such solution would allow the ALICE-TOF detector to collect all the hits generated by pp collisions at 1 MHz interaction rate, which corresponds to an amount four times larger than that initially expected at such frequencies with the triggered read-out system operated at 250 kHz for LHC Run 3. The obtained results confirm that the proposed read-out scheme is a viable option for the ALICE TOF detector. The results also highlighted that it will be advantageous if the ALICE-TOF group also implement an online monitoring system of noisy channels to allow their deactivation in real time.