3 resultados para Optimized using
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.
Resumo:
Wearable biosensors are attracting interest due to their potential to provide continuous, real-time physiological information via dynamic, non-invasive measurements of biochemical markers in biofluids, such as interstitial fluid (ISF). One notable example of their applications is for glycemic monitoring in diabetic patients, which is typically carried out either by direct measurement of blood glucose via finger pricking or by wearable sensors that can continuously monitor glucose in ISF by sampling it from below the skin with a microneedle. In this context, the development of a new and minimally invasive multisensing tattoo-based platform for the monitoring of glucose and other analytes in ISF extracted through reverse iontophoresis in proposed by the GLUCOMFORT project. This elaborate describes the in-vitro development of flexible electrochemical sensors based on inkjet-printed PEDOT:PSS and metal inks that are capable of determining glucose and chloride at biologically relevant concentrations, making them good candidates for application in the GLUCOMFORT platform. In order to make PEDOT:PSS sensitive to glucose at micromolar concentrations, a biocompatible functionalization based on immobilized glucose oxidase and electrodeposited platinum was developed. This functionalization was successfully applied to bulk and flexible amperometric devices, the design of which was also optimized. Using the same strategy, flexible organic electrochemical transistors (OECTs) for glucose sensing were also made and successfully tested. For the sensing of chloride ions, an organic charge-modulated field-effect transistor (OCMFET) featuring a silver/silver chloride modified floating gate electrode was developed and tested.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.