3 resultados para Operational and network efficiency

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to investigate possible patterns occurring in the sewage bacterial content of four cities (Bologna, Budapest, Rome, Rotterdam) over time (March 2020 - November 2021), also considering the possible effects of the lockdown periods due to the COVID-19 pandemic. The sewage metagenomics data were provided within VEO (Versatile Emerging infectious disease Observatory) project. The first analysis was the evaluation of the between samples diversity, looking for (dis)similarities among the cities, as well as among different time periods (seasonality). To this aim, we computed both similarity networks and Principal Coordinate Analysis (PCoA) plots based on the Bray-Curtis metric. Then, the alpha-biodiversity of the samples was estimated by means of different diversity indices. By looking at the temporal behaviour of the biodiversity in the four cities, we noticed an abrupt decrease in both Rome and Budapest in the Summer of 2020, that is related to: the prevalence of some species when the minimum occurred, and the change in correlations among species (studied via correlation networks), which is enriched in the period of minimum biodiversity. Rotterdam samples seem to be very different with respect to those from the other cities, as confirmed by PCoA. Moreover, the Rotterdam time series is proved to be stable and stationary also in terms of biodiversity. The low variability in the Rotterdam samples seems to be related to the species of Pseudomonas genus, which are highly variable and plentiful in the other cities, but are not among the most abundant in Rotterdam. Also, we observed that no seasonality effect emerged from the time series of the four cities. Regarding the impact of lockdown periods due to the COVID-19 pandemic, from the limited data available no effect on the time series considered emerges. More samples will be soon available and these analyses will be performed also on them, so that the possible effects of lockdowns may be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, rechargeable Li-ion batteries play an important role in portable consumer devices. Formulation of such batteries is improvable by researching new cathodic materials that present higher performances of cyclability and negligible efficiency loss over cycles. Goal of this work was to investigate a new cathodic material, copper nitroprusside, which presents a porous 3D framework. Synthesis was carried out by a low-cost and scalable co-precipitation method. Subsequently, the product was characterized by means of different techniques, such as TGA, XRF, CHN elemental analysis, XRD, Mössbauer spectroscopy and cyclic voltammetry. Electrochemical tests were finally performed both in coin cells and by using in situ cells: on one hand, coin cells allowed different formulations to be easily tested, on the other operando cycling led a deeper insight to insertion process and both chemical and physical changes. Results of several tests highlighted a non-reversible electrochemical behavior of the material and a rapid capacity fading over time. Moreover, operando techniques report that amorphisation occurs during the discharge.