7 resultados para Operation analysis

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli strumenti chirurgici sono importanti “devices” utilizzati come supporto indi-spensabile nella cura di pazienti negli ospedali. Essi sono caratterizzati da un intero ciclo di vita che inizia convenzionalmente nello “Store”, dove gli strumenti sterilizzati sono prelevati per essere utilizzati all’interno delle sale operatorie, e termina nuovamente nello “Store”, dove gli strumenti vengono immagazzinati per essere riutilizzati in un nuovo ciclo. Può accadere che le singole fasi del ciclo subiscano ritardi rispetto ai tempi previ-sti, non assicurando, pertanto, nelle sale operatorie, il corretto numero degli stru-menti secondo i tempi programmati. Il progetto che vado ad illustrare ha come obiettivo l’ottimizzazione del ciclo degli strumenti chirurgici all’interno di un nuovo ospedale, applicando i principi della Lean philosophy ed in particolare i metodi: “Poke Yoke, 5S e tracciabilità”. Per raggiungere tale scopo, il progetto è stato articolato come segue. In un primo momento si è osservato l’intero ciclo di vita degli strumenti nei due principali ospedali di Copenhagen (Hervel e Gentofte hospital). Ciò ha permesso di rilevare gli steps del ciclo, nonché di riscontrare sul campo i principali problemi relativi al ciclo stesso quali: bassa flessiblità, decentramento dei differenti reparti di cleaning e di store rispetto alle operation theatres ed un problema nel solleva-mento degli strumenti pesanti. Raccolte le dovute informazioni, si è passati alla fase sperimentale, in cui sono stati mappati due cicli di vita differenti, utilizzando tre strumenti di analisi: • Idef0 che consente di avere una visione gerarchica del ciclo; • Value stream Mapping che permette di evidenziare i principali sprechi del ciclo; • Simulator Tecnomatix che favorisce un punto di vista dinamico dell’analisi. Il primo ciclo mappato è stato creato con il solo scopo di mettere in risalto gli steps del ciclo e alcuni problemi rincontrati all’interno degli ospedali visitati. Il secondo ciclo, invece, è stato creato in ottica Lean al fine di risolvere alcuni tra i principali problemi riscontrati nei due ospedali e ottimizzare il primo ciclo. Si ricordi, infatti, che nel secondo ciclo le principali innovazioni introdotte sono state: l’utilizzo del Barcode e Rfid Tag per identificare e tracciare la posizione degli items, l’uso di un “Automatic and Retrievial Store” per minimizzare i tempi di inserimento e prelievo degli items e infine l’utilizzo di tre tipologie di carrello, per consentire un flessibile servizio di cura. Inoltre sono state proposte delle solu-zioni “Poke-Yoke” per risolvere alcuni problemi manuali degli ospedali. Per evidenziare il vantaggio del secondo ciclo di strumenti, è stato preso in consi-derazione il parametro “Lead time”e le due simulazioni, precedentemente create, sono state confrontate. Tale confronto ha evidenziato una radicale riduzione dei tempi (nonché dei costi associati) della nuova soluzione rispetto alla prima. Alla presente segue la trattazione in lingua inglese degli argomenti oggetto di ri-cerca. Buona lettura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safe operation of nighttime flight missions would be enhanced using Night Vision Imaging Systems (NVIS) equipment. This has been clear to the military since 1970s and to the civil helicopters since 1990s. In these last months, even Italian Emergency Medical Service (EMS) operators require Night Vision Goggles (NVG) devices that therefore amplify the ambient light. In order to fly with this technology, helicopters have to be NVIS-approved. The author have supported a company, to quantify the potentiality of undertaking the certification activity, through a feasibility study. Even before, NVG description and working principles have been done, then specifications analysis about the processes to make a helicopter NVIS-approved has been addressed. The noteworthy difference between military specifications and the civilian ones highlights non-irrevelant lacks in the latter. The activity of NVIS certification could be a good investment because the following targets have been achieved: Reductions of the certification cost, of the operating time and of the number of non-compliance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage profile of the catenary between traction substations (TSSs) is affected by the trolleybus current intake and by its position with respect to the TSSs: the higher the current requested by the bus and the further the bus from the TSSs, the deeper the voltage drop. When the voltage drops below 500V, the trolleybus is forced to decrease its consumption by reducing its input current. This thesis deals with the analysis of the improvements that the installation of an BESS produces in the operation of a particularly loaded FS of the DC trolleybus network of the city of Bologna. The stationary BESS is charged by the TSSs during off-peak times and delivers the stored energy when the catenary is overloaded alleviating the load on the TSSs and reducing the voltage drops. Only IMC buses are considered in the prospect of a future disposal of all internal combustion engine vehicles. These trolleybuses cause deeper voltage drops because they absorb enough current to power their traction motor and recharge the on board battery. The control of the BESS aims to keep the catenary voltage within the admissible voltage range and makes sure that all physical limitations are met. A model of FS Marconi Trento Trieste is implemented in Simulink environment to simulate its daily operation and compare the behavior of the trolleybus network with and without BESS. From the simulation without BESS, the best location of the energy storage system is deduced, and the battery control is tuned. Furthermore, from the knowledge of the load curve and the battery control trans-characteristic, it is formulated a prediction of the voltage distribution at BESS connection point. The prediction is then compared with the simulation results to validate the Simulink model. The BESS allows to decrease the voltage drops along the catenary, the Joule losses and the current delivered by the TSSs, indicating that the BESS can be a solution to improve the operation of the trolleybus network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoplethysmography (PPG) sensors allow for noninvasive and comfortable heart-rate (HR) monitoring, suitable for compact wearable devices. However, PPG signals collected from such devices often suffer from corruption caused by motion artifacts. This is typically addressed by combining the PPG signal with acceleration measurements from an inertial sensor. Recently, different energy-efficient deep learning approaches for heart rate estimation have been proposed. To test these new solutions, in this work, we developed a highly wearable platform (42mm x 48 mm x 1.2mm) for PPG signal acquisition and processing, based on GAP9, a parallel ultra low power system-on-chip featuring nine cores RISC-V compute cluster with neural network accelerator and 1 core RISC-V controller. The hardware platform also integrates a commercial complete Optical Biosensing Module and an ARM-Cortex M4 microcontroller unit (MCU) with Bluetooth low-energy connectivity. To demonstrate the capabilities of the system, a deep learning-based approach for PPG-based HR estimation has been deployed. Thanks to the reduced power consumption of the digital computational platform, the total power budget is just 2.67 mW providing up to 5 days of operation (105 mAh battery).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master's thesis investigates different aspects of Dual-Active-Bridge (DAB) Converter and extends aspects further to Multi-Active-Bridges (MAB). The thesis starts with an overview of the applications of the DAB and MAB and their importance. The analytical part of the thesis includes the derivation of the peak and RMS currents, which is required for finding the losses present in the system. The power converters, considered in this thesis are DAB, Triple-Active Bridge (TAB) and Quad-Active Bridge (QAB). All the theoretical calculations are compared with the simulation results from PLECS software for identifying the correctness of the reviewed and developed theory. The Hardware-in-the-Loop (HIL) simulation is conducted for checking the control operation in real-time with the help of the RT box from the Plexim. Additionally, as in real systems digital signal processor (DSP), system-on-chip or field programmable gate array is employed for the control of the power electronic systems, and the execution of the control in the real-time simulation (RTS) conducted is performed by DSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the sizing and analysis of the electrical power system of a petrochemical plant. The activity was carried out in the framework of an electrical engineering internship. The sizing and electrical calculations, as well as the study of the dynamic behavior of network quantities, are accomplished by using the ETAP (Electrical Transient Analyzer Program) software. After determining the type and size of the loads, the calculation of power flows is carried out for all possible network layout and different power supply configurations. The network is normally operated in a double radial configuration. However, the sizing must be carried out taking into account the most critical configuration, i.e., the temporary one of single radial operation, and also considering the most unfavorable power supply conditions. The calculation of shortcircuit currents is then carried out and the appropriate circuit breakers are selected. Where necessary, capacitor banks are sized in order to keep power factor at the point of common coupling within the preset limits. The grounding system is sized by using the finite element method. For loads with the highest level of criticality, UPS are sized in order to ensure their operation even in the absence of the main power supply. The main faults that can occur in the plant are examined, determining the intervention times of the protections to ensure that, in case of failure on one component, the others can still properly operate. The report concludes with the dynamic and stability analysis of the power system during island operation, in order to ensure that the two gas turbines are able to support the load even during transient conditions.