2 resultados para On-load Tap Changing Transformer
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
Resumo:
This dissertation describes a deepening study about Visual Odometry problem tackled with transformer architectures. The existing VO algorithms are based on heavily hand-crafted features and are not able to generalize well to new environments. To train them, we need carefully fine-tune the hyper-parameters and the network architecture. We propose to tackle the VO problem with transformer because it is a general-purpose architecture and because it was designed to transformer sequences of data from a domain to another one, which is the case of the VO problem. Our first goal is to create synthetic dataset using BlenderProc2 framework to mitigate the problem of the dataset scarcity. The second goal is to tackle the VO problem by using different versions of the transformer architecture, which will be pre-trained on the synthetic dataset and fine-tuned on the real dataset, KITTI dataset. Our approach is defined as follows: we use a feature-extractor to extract features embeddings from a sequence of images, then we feed this sequence of embeddings to the transformer architecture, finally, an MLP is used to predict the sequence of camera poses.