3 resultados para ORGANOMETALLIC CATALYSIS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.
Resumo:
Il presente lavoro di tesi si inserisce in un progetto di ricerca volto alla sintesi di nuovi complessi di metalli di transizione per lo sviluppo di catalizzatori da impiegare in reazioni di catalisi omogenea. In particolare il mio progetto si è concentrato sulla sintesi di complessi organometallici di manganese con leganti carbenici N-eterociclici (NHC). La scelta dei leganti è stata effettuata in modo tale da poter avere leganti chelanti NHC di tipo MIC (mesoionic carbene) sintetizzati tramite cicloaddizione tra un alchino ed un azide catalizzata da rame (CuAAC) e N-alchilazione. Lo studio di questi complessi a base di manganese è ancora tutt’oggi agli albori, leganti NHC vengono molto utilizzati grazie alla possibilità di variarne le proprietà steriche ed elettroniche e alla possibilità di formare legami forti con quasi tutti i metalli. Il manganese è stato scelto poiché un elemento abbondante, poco tossico e poco costoso. The present thesis work is part of a research project aimed at the synthesis of new transition metal complexes to be used in homogeneous catalysis reactions. In particular my project focused on the synthesis of manganese organometallic complexes with N-heterocyclic carbene ligands (NHC). The choice of ligands was carried out to have NHC chelating ligands of the class of MIC (mesoionic carbene). These ligands are synthesized by cycloaddition between alkyl and azide with a copper-catalyzed reaction (CuAAC) and N-alkylation in order to obtain MIC after deprotonation. The study of these manganese-based complexes is still in its infancy today, NHC ligands are widely used thanks to the possibility of varying their steric and electronic properties and the possibility of forming strong bonds with almost all metals. The choice of manganese was made because is an abundant, low-toxic and inexpensive element.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.