4 resultados para ORGANIC-CHEMISTRY

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last few years organic chemistry has focused attention on enantiomeric resolution. Among the several techiniques, crystallization-induced diastereoisomeric transformation (CIDT) aroused the interest because of high yields, as well as to meet the criteria of green chemistry. The process is applied in the specific way for a racemic mixtures of α- epimerizable aldehydes, in order to obtain enatiomerically enrichment mixtures. This technique involves the transformation of a racemic mixture of enantiomers into a diasteroisomeric one by a reaction with a enantiopure auxiliary (Betti’s base). Then, to mixture of diastereoisomers is applied the acid-catalyzed enrichment process: in solution, the epimerization of more soluble diastereoisomer occurs, accompanied by precipitation and hence the removal of the less soluble one from the equilibrium. Finally, through the hydrolysis reaction, it was possible to recover the enantiomerically enriched aldehydes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystallization-induced diastereoisomer transformation (CIDT) was successfully employed in the enantioselective synthesis of 2-alkyl-3-aryl-propan-1-amines. These products are seen as potentially useful building blocks in the field of asymmetric organic chemistry, notably for pharmaceutically relevant compounds. The procedure was based on a recently reported protocol for deracemization of dihydrocinnamic aldehydes in which enantiomerically enriched 1-(amino(phenyl)methyl)naphthalen-2-ol (Betti base) is employed as a resolving agent. Additionally, fenpropimorph, a biologically active substance which contains the 2-alkyl-3-aryl-propan-1-amine moiety was synthetized, as an attempt to assess the usefulness of the enantiomerically enriched amines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cubane is a peculiar cube-shaped alkane molecule with a rigid, regular structure. This makes it a good scaffold, i.e. a molecular platform to which the substituents are arranged in a specific and fixed orientation. Moreover, cubane has a body diagonal of 2.72 Å, very similar to the distance across the benzene ring, i.e. 2.79 Å. Thus, it would be possible to use cubane as a scaffold in medicinal and material chemistry as a benzene isostere 1,2. This could lead to advantages in terms of solubility and toxicity and could provide novel properties. For this purpose, the possibility of performing “modern organic chemistry” on the cubane scaffold has to be studied. This project was entirely carried out in the framework of the Erasmus+ mobility programme at the Trinity College (Dublin, IRL) under the supervision of prof. M. O. Senge. The main goal of this project was to widen the knowledge on cubane chemistry. In particular, it was decided to test reactions that were never applied to the scaffold before, such as metathesis of 4-iodo-1-vinylcubane and Stetter reaction of 1-iodocubane-4-carboxaldehyde. These two molecules were synthesized in 10 and 9 steps respectively from commercially available cyclopentanone, following a known procedure. Unfortunately, metathesis with different olefins, such as styrene, α,β unsaturated compounds and linear α-olefins failed under different conditions, highlighting cubane behaves as a Type IV, challenging olefin under metathesis conditions. Even the employment of a specific catalyst for hindered olefins failed in the cross-coupling with linear α-olefins. On the other hand, two new molecules were synthesized via Stetter reaction and benzoin condensation respectively. Even if the majority of the reactions were not successful, this work can be seen as an inspiration for further investigation on cubane chemistry, as new questions were raised and new opportunities were envisioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research project object of this thesis is focused on the development of an advanced analytical system based on the combination of an improved thin layer chromatography (TLC) plate coupled with infrared (FTIR) and Raman microscopies for the detection of synthetic dyes. Indeed, the characterization of organic colorants, which are commonly present in mixtures with other components and in a very limited amount, still represents a challenging task in scientific analyses of cultural heritage materials. The approach provides selective spectral fingerprints for each compound, foreseeing the complementary information obtained by micro ATR-RAIRS-FTIR and SERS-Raman analyses, which can be performed on the same separated spot. In particular, silver iodide (AgI) applied on a gold coated slide is proposed as an efficient stationary phase for the discrimination of complex analyte mixtures, such as dyes present in samples of art-historical interest. The gold-AgI-TLC plate shows high performances related both to the chromatographic separation of analytes and to the spectroscopic detection of components. The use of a mid-IR transparent inorganic salt as the stationary phase avoids interferences of the background absorption in FTIR investigations. Moreover, by ATR microscopy measurements performed on the gold-AgI surface, a considerable enhancement in the intensity of spectra is observed. Complementary information can be obtained by Raman analyses, foreseeing a SERS activity of the AgI substrate. The method has been tested for the characterization of a mixture of three synthetic organic colorants widely used in dyeing processes: Brilliant Green (BG1), Rhodamine B (BV10) and Methylene Blue (BB9).