10 resultados para OHMIC DISSIPATION

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent energy dissipation is presented in the theoretical context of the famous Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help the reader understand the approach to turbulence study, as well as give some basic insights to the problem. A clear distinction is made amongst dissipation, pseudo-dissipation and dissipation surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into internal energy, which makes this quantity a fundamental characteristic to investigate in order to enhance our understanding of turbulence. The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of the three dimensional velocity field. Once considering an hot-wire technique to measure dissipation we need to deal with surrogates of dissipation, since not all the terms can be measured. The analysis of surrogates is the main topic of this work. In particular two flows, the turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due to their simple structure. Observations made in the canonic flows are often transferable to more complicated and interesting cases, with many industrial applications. The main tools of investigation are DNS simulations and experimental measures. DNS data are used as a benchmark for the experimental results since all the components of dissipation are known within the numerical simulation. The results of some DNS were already available at the start of this thesis, so the main work consisted in reading and processing the data. Experiments were carried out by means of hot-wire anemometry, described in detail on a theoretical and practical level. The study of DNS data of a turbulent channel at Re=298 reveals that the traditional surrogate can be improved Consequently two new surrogates are proposed and analysed, based on terms of the velocity gradient that are easy to measure experimentally. We manage to find a formulation that improves the accuracy of surrogates by an order of magnitude. For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our experimental facility CAT at Re=70000, are compared to validate the experiment. It is found that the ratio between components of the dissipation differs between DNS and experimental data. Possible errors in both sets of data are discussed, and some ways to improve the data are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the tides of a celestial bodies can unveil important information about their interior as well as their orbital evolution. The most important tidal parameter is the Love number, which defines the deformation of the gravity field due to an external perturbing body. Tidal dissipation is very important because it drives the secular orbital evolution of the natural satellites, which is even more important in the case of the the Jupiter system, where three of the Galilean moons, Io, Europa and Ganymede, are locked in an orbital resonance where the ratio of their mean motions is 4:2:1. This is called Laplace resonance. Tidal dissipation is described by the dissipation ratio k2/Q, where Q is the quality factor and it describes the dampening of a system. The goal of this thesis is to analyze and compare the two main tidal dynamical models, Mignard's model and gravity field variation model, to understand the differences between each model with a main focus on the single-moon case with Io, which can help also understanding better the differences between the two models without over complicating the dynamical model. In this work we have verified and validated both models, we have compared them and pinpointed the main differences and features that characterize each model. Mignard's model treats the tides directly as a force, while the gravity field variation model describes the tides with a change of the spherical harmonic coefficients. Finally, we have also briefly analyzed the difference between the single-moon case and the two-moon case, and we have confirmed that the governing equations that describe the change of semi-major axis and eccentricity are not good anymore when more moons are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The convergence of information technology and consumer electronics towards battery powered portable devices has increased the interest in high efficiency, low dissipation amplifiers. Class D amplifiers are the state of the art in low power consumption and high performance amplification. In this thesis we explore the possibility of exploiting nonlinearities introduced by the PWM modulation, by designing an optimized modulation law which scales its carrier frequency adaptively with the input signal's average power while preserving the SNR, thus reducing power consumption. This is achieved by means of a novel analytical model of the PWM output spectrum, which shows how interfering harmonics and their bandwidth affect the spectrum. This allows for frequency scaling with negligible aliasing between the baseband spectrum and its harmonics. We performed low noise power spectrum measurements on PWM modulations generated by comparing variable bandwidth, random test signals with a variable frequency triangular wave carrier. The experimental results show that power-optimized frequency scaling is both feasible and effective. The new analytical model also suggests a new PWM architecture that can be applied to digitally encoded input signals which are predistorted and compared with a cosine carrier, which is accurately synthesized by a digital oscillator. This approach has been simulated in a realistic noisy model and tested in our measurement setup. A zero crossing search on the obtained PWM modulation law proves that this approach yields an equivalent signal quality with respect to traditional PWM schemes, while entailing the use of signals whose bandwidth is remarkably smaller due to the use of a cosine instead of a triangular carrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials. Dielectrics are important in order to explain various phenomena in Solid-State Physics and in Physics of Biological Materials. Indeed, during the last two centuries, many scientists have tried to explain and model the dielectric relaxation. Starting from the Kohlrausch model and passing through the ideal Debye one, they arrived at more com- plex models that try to explain the experimentally observed distributions of relaxation times, including the classical (Cole-Cole, Davidson-Cole and Havriliak-Negami) and the more recent ones (Hilfer, Jonscher, Weron, etc.). The purpose of this thesis is to discuss a variety of models carrying out the analysis both in the frequency and in the time domain. Particular attention is devoted to the three classical models, that are studied using a transcendental function known as Mittag-Leffler function. We highlight that one of the most important properties of this function, its complete monotonicity, is an essential property for the physical acceptability and realizability of the models. Lo studio delle proprietà dielettriche riguarda l’immagazzinamento e la dissipazione di energia elettrica e magnetica nei materiali. I dielettrici sono importanti al fine di spiegare vari fenomeni nell’ambito della Fisica dello Stato Solido e della Fisica dei Materiali Biologici. Infatti, durante i due secoli passati, molti scienziati hanno tentato di spiegare e modellizzare il rilassamento dielettrico. A partire dal modello di Kohlrausch e passando attraverso quello ideale di Debye, sono giunti a modelli più complessi che tentano di spiegare la distribuzione osservata sperimentalmente di tempi di rilassamento, tra i quali modelli abbiamo quelli classici (Cole-Cole, Davidson-Cole e Havriliak-Negami) e quelli più recenti (Hilfer, Jonscher, Weron, etc.). L’obiettivo di questa tesi è discutere vari modelli, conducendo l’analisi sia nel dominio delle frequenze sia in quello dei tempi. Particolare attenzione è rivolta ai tre modelli classici, i quali sono studiati utilizzando una funzione trascendente nota come funzione di Mittag-Leffler. Evidenziamo come una delle più importanti proprietà di questa funzione, la sua completa monotonia, è una proprietà essenziale per l’accettabilità fisica e la realizzabilità dei modelli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jupiter and its moons are a complex dynamical system that include several phenomenon like tides interactions, moon's librations and resonances. One of the most interesting characteristics of the Jovian system is the presence of the Laplace resonance, where the orbital periods of Ganymede, Europa and Io maintain a 4:2:1 ratio respectively. It is interesting to study the role of the Laplace Resonance in the dynamic of the system, especially regarding the dissipative nature of the tidal interaction between Jupiter and its closest moon, Io. Numerous theories have been proposed regarding the orbital evolution of the Galilean satellites, but they disagree about the amount of dissipation of the system, therefore about the magnitude and the direction of the evolution of the system, mainly because of the lack of experimental data. The future JUICE space mission is a great opportunity to solve this dispute. JUICE is an ESA (European Space Agency) L-class mission (the largest category of missions in the ESA Cosmic Vision) that, at the beginning of 2030, will be inserted in the Jovian system and that will perform several flybys of the Galilean satellites, with the exception of Io. Subsequently, during the last part of the mission, it will orbit around Ganymede for nine months, with a possible extension of the mission. The data that JUICE will collect during the mission will have an exceptional accuracy, allowing to investigate several aspects of the dynamics the system, especially, the evolution of Laplace Resonance of the Galilean moons and its stability. This thesis will focus on the JUICE mission, in particular in the gravity estimation and orbit reconstruction of the Galilean satellites during the Jovian orbital phase using radiometric data. This is accomplished through an orbit determination technique called multi-arc approach, using the JPL's orbit determination software MONTE (Mission-analysis, Operations and Navigation Tool-kit Environment).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid Organic-Inorganic Halide Perovskites (HOIPs) include a large class of materials described with the general formula ABX3, where A is an organic cation, B an inorganic cation and X an halide anion. HOIPs show excellent optoelectronic characteristics such as tunable band gap, high adsorption coefficient and great mobility life-time. A subclass of these materials, the so-called two- dimensional (2D) layered HOIPs, have emerged as potential alternatives to traditional 3D analogs to enhance the stability and increase performance of perovskite devices, with particular regard in the area of ionizing radiation detectors, where these materials have reached truly remarkable milestones. One of the key challenges for future development of efficient and stable 2D perovskite X-ray detector is a complete understanding of the nature of defects that lead to the formation of deep states. Deep states act as non-radiative recombination centers for charge carriers and are one of the factors that most hinder the development of efficient 2D HOIPs-based X-ray detectors. In this work, deep states in PEA2PbBr4 were studied through Photo-Induced Current Transient Spectroscopy (PICTS), a highly sensitive spectroscopic technique capable of detecting the presence of deep states in highly resistive ohmic materials, and characterizing their activation energy, capture cross section and, under stringent conditions, the concentration of these states. The evolution of deep states in PEA 2 PbBr 4 was evaluated after exposure of the material to high doses of ionizing radiation and during aging (one year). The data obtained allowed us to evaluate the contribution of ion migration in PEA2PbBr4. This work represents an important starting point for a better understanding of transport and recombination phenomena in 2D perovskites. To date, the PICTS technique applied to 2D perovskites has not yet been reported in the scientific literature.