2 resultados para Numerical Weather Prediction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Increasing in resolution of numerical weather prediction models has allowed more and more realistic forecasts of atmospheric parameters. Due to the growing variability into predicted fields the traditional verification methods are not always able to describe the model ability because they are based on a grid-point-by-grid-point matching between observation and prediction. Recently, new spatial verification methods have been developed with the aim of show the benefit associated to the high resolution forecast. Nested in among of the MesoVICT international project, the initially aim of this work is to compare the newly tecniques remarking advantages and disadvantages. First of all, the MesoVICT basic examples, represented by synthetic precipitation fields, have been examined. Giving an error evaluation in terms of structure, amplitude and localization of the precipitation fields, the SAL method has been studied more thoroughly respect to the others approaches with its implementation in the core cases of the project. The verification procedure has concerned precipitation fields over central Europe: comparisons between the forecasts performed by the 00z COSMO-2 model and the VERA (Vienna Enhanced Resolution Analysis) have been done. The study of these cases has shown some weaknesses of the methodology examined; in particular has been highlighted the presence of a correlation between the optimal domain size and the extention of the precipitation systems. In order to increase ability of SAL, a subdivision of the original domain in three subdomains has been done and the method has been applied again. Some limits have been found in cases in which at least one of the two domains does not show precipitation. The overall results for the subdomains have been summarized on scatter plots. With the aim to identify systematic errors of the model the variability of the three parameters has been studied for each subdomain.
Resumo:
Lo scopo di questo studio è la comprensione della dinamica dello strato limite urbano per città dell’Emilia Romagna tramite simulazioni numeriche. In particolare, l’attenzione è posta sull’ effetto isola di calore, ovvero sulla differenza di temperatura dell’aria in prossimità del suolo fra zone rurali e urbane dovuta all’urbanizzazione. Le simulazioni sono state effettuate con il modello alla mesoscala "Weather Research and Forecasting" (WRF), accoppiato con le parametrizzazioni urbane "Building Effect Parametrization" (BEP) e "Building Energy Model" (BEM), che agiscono a vari livelli verticali urbani. Il periodo di studio riguarda sei giorni caldi e senza copertura nuvolosa durante un periodo di heat wave dell’anno 2015. La copertura urbana è stata definita con il "World Urban Databes and Access Portal Tools" (WUDAPT), un metodo che permette di classificare le aree urbane in dieci "urban climate zones" (UCZ), attraverso l’uso combinato di immagini satellitari e "training areas" manualmente definite con il software Google Earth. Sono state svolte diverse simulazioni a domini innestati, con risoluzione per il dominio più piccolo di 500 m, centrato sulla città di Bologna. Le differenze fra le simulazioni riguardano la presenza o l’assenza delle strutture urbane, il metodo di innesto e tipo di vegetazione rurale. Inoltre, è stato valutato l’effetto dovuto alla presenza di pannelli fotovoltaici sopra i tetti di ogni edificio e le variazioni che i pannelli esercitano sullo strato limite urbano. Per verificare la bontà del modello, i dati provenienti dalle simulazioni sono stati confrontati con misure provenienti da 41 stazioni all’interno dell’area di studio. Le variabili confrontate sono: temperatura, umidità relativa, velocità e direzione del vento. Le simulazioni sono in accordo con i dati osservativi e riescono a riprodurre l’effetto isola di calore: la differenza di temperatura fra città e zone rurali circostanti è nulla durante il giorno; al contrario, durante la notte l’isola di calore è presente, e in media raggiunge il massimo valore di 4°C alle 1:00. La presenza dei pannelli fotovoltaici abbassa la temperatura a 2 metri dell’aria al massimo di 0.8°C durante la notte, e l’altezza dello strato limite urbano dell’ordine 200mrispetto al caso senza pannelli. I risultati mostrano come l’uso di pannelli fotovoltaici all’interno del contesto urbano ha molteplici benefici: infatti, i pannelli fotovoltaici riescono a ridurre la temperatura durante un periodo di heat wave, e allo stesso tempo possono parzialmente sopperire all’alto consumo energetico, con una conseguente riduzione del consumo di combustibili fossili.