5 resultados para Nucleophilic
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
2-Phenoxyethanol (ethylene glycol monophenyl ether) is used as solvent for cellulose acetate, dyes, inks, and resins; it is a synthetic intermediate in the production of plasticizers, pharmaceuticals, and fragrances. Phenoxyethanol is obtained industrially by reaction of phenol with ethylene oxide, in the presence of an homogeneous alkaline catalyst, typically sodium hydroxide. The yield is not higher than 95-96%, because of the formation of polyethoxylated compounds. However, the product obtained may not be acceptable for use in cosmetic preparations and fragrance formulations, due to presence of a pungent “metallic” odor which masks the pleasant odor of the ether, deriving from residual traces of the metallic catalyst. Here we report a study aimed at using ethylene carbonate in place of ethylene oxide as the reactant for phenoxyethanol synthesis; the use of carbonates as green nucleophilic reactants is an important issue in the context of a modern and sustainable chemical industry. Moreover, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents, and used heterogeneous basic catalysts. We carried out the reaction by using various molar ratios between phenol and ethylene carbonate, at temperatures ranging between 180 and 240°C, with a Na-mordenite catalyst. Under specific conditions, it was possible to obtain total phenol conversion with >99% yield to phenoxyethanol in few hours reaction time, using a moderate excess of ethylene carbonate. Similar results, but with longer reaction times, were obtained using a stoichiometric feed ratio of reactants. One important issue of the research was finding conditions under which the leaching of Na was avoided, and the catalyst could be separated and reused for several reaction batches.
Resumo:
The nucleophile/electrophile combination in the aromatic substitution reaction using aminothiazole derivatives as nucleophiles has been the subject of this study. The reaction between 2,4-dipyrrolidinylthiazole and the neutral carbon electrophile 1,3,5-trinitrobenzene gave a stable Wheland-Meisenheimer (WM) complex. This represents another example, among those already found by the research group in which this work has been carried out, of stable zwitterionic σ-intermediates. When the reaction was carried out with halonitrobenzene derivatives, it produced the substitution product in position 5 of the thiazole ring. 2,4-dipyrrolidinylthiazole and arenediazonium salts gave the coupling product at the C5 of the thiazole ring together with many byproducts and the stable Wheland intermediate formed by attack of the proton on the C5 of the starting thiazole reagent. Arenediazonium salts were coupled also with 2-pyrrolidinylthiazole. In this case quantitative formation of the substitution product deriving from the attack of the electrophile on the carbon nucleophilic position of the thiazole ring was obtained. In conclusion, the results had allowed to expand the knowledge on electrophilic/nucleophilic interactions in the aromatic substitution involving thiazole heteroaromatics and provided a further example of stable Wheland-Meisenheimer intermediates.
Resumo:
The topic of this work is the simultaneous activation, promoted by 9-epi-NH2-DHQA-TU, of alkylideneoxindole and nistirene derivatives, respectively via base catalysis and hydrogen-bond catalysis. The chosen substrates, of high biological interest, are used as starting materials for a vinylogous Michael addition where we wish to control the stereochemistry of the two asymmetric carbons far away from the active site, respectively in γ and δ position. Due to the particular structure of the starting oxindoles, it is hereby presented the first variant of this reaction performed at its highest level of stereochemical complexity. It is possible as a matter of fact, to generate 24 isomers of the product. Specifically, given that the nucleophilic attack can occur from various, non equivalent regions of the starting molecule, our main goal was to achieve a complete regio- and stereocontrol of the reaction. We have verified that the reported organocatalyzed vinylogous reaction represents a valid integration of the metal-catalyzed one, since it affords highly stereochemically complex products in good to high yields and excellent optical purity.
Resumo:
Pennicillipyrone A and B are two novel meroterpenoids isolated from the marine-derived fungus Penicilliump sp. Although a preliminary toxicity studies demonstrated the bioactivity of penicillipyrone A to be far superior to that of its congener penicillipyrone B, we were intrigued by its structure. Moreover, it appeared as though one could design an efficient total synthesis based on chemistry that was familiar to our laboratory. The purpose of this project was the study of a new synthesis of Pennicillipyrone B by way of a doubley-biomimetic approach. The intended approach proceeds through a polyene cascade reaction terminated by a nucleophilic pyrone - a reaction not yet known in the literature for the construction of this type of scaffold. During the course of this study we have learned about the unanticipated reactivity of C2 substituted keto-dioxinones with regard to self-condensation. In addition, four new compounds were synthesized and two synthetic routes to the target molecule are presented.
Resumo:
In this work, we present the first regio- and enantioselective organocatalytic nucleophilic dearomatization of activated N-alkyl pyridinium salts. In particular, N-benzyl pyridinium bromides bearing electron-withdrawing substituents at the C3 position of the pyridine ring were chosen as substrates. These compounds were easily obtained through an alkylation reaction between benzyl bromides and the corresponding 3-substituted pyridines. Then, a wide range of nucleophiles and organocatalysts was tested, providing the best results when indole, a thiourea derived from quinidine and 1-benzyl-3-nitropyridinum bromide were employed as the nucleophile, the catalyst and the pyridinium salt, respectively. Subsequently, the reaction conditions were optimised evaluating different bases, solvents, N-benzylic protecting groups, molar concentrations and temperatures. With the optimized condition in hand, the scope of the reaction with different substituted indoles was explored, affording the corresponding 1,4-dihydropyridines in good yields, regio- and enantio-selectivities. In addition, several experiments were carried out in order to understand the mechanism of the reaction, showing an unusual pathway involving a covalently bound intermediate formed by addition of the catalyst to the pyridine unit.