1 resultado para Nucleic acid delivery

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work started a research project aimed at the synthesis of conformationally “locked” PNA (Peptide Nucleic Acids) monomers. Compared to classic aeg-PNA, this structural modification would result in an improvement in the pairing properties with natural nucleic acids, due to entropic variations in the process. Specifically, an attempt was made to build a PNA monomer around a β-lactam ring. That ring could be imagined as obtained by linking the methylene groups in α position of both the nucleobase and the carboxyl function. These structural properties would imply pre-organization of the final oligomer, improving the pairing process in biological systems. The first step of this work was the investigation of the Staudinger reaction for the ciclization of the lactam ring, and in particular the activation method of the carboxylic group of the nucleobase derivatives. Use of triazine chloride led to the synthesis of the adenine-based β-lactam-PNA. Attempts to synthesize the same monomer based on cytosine, guanine and thymine were unsuccessful, so alternative methods for carboxylic group activation were investigated. Conversion of carboxylic acids to acyl chlorides led to a partial result: despite the method worked well with analogues of the final reactants, it didn’t worked with substrates needed for lactam based PNAs. Search for a valid activation process continued involving carbonyl diimidazole, Mukayama reagent, and LDA (with methylester derivative of nucelobase) without good results. Last, it was investigated a different synthetic approach by first synthesizing a proper backbone with a chlorine in the β- lactam ring. This chlorine ring should undergo substitution by a nucleobase anion to give the desired PNA monomer. Unluckily also this synthetic route didn’t lead to the desired monomers.