4 resultados para Nuclear and High Energy Physics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.
Resumo:
Nei prossimi anni è atteso un aggiornamento sostanziale di LHC, che prevede di aumentare la luminosità integrata di un fattore 10 rispetto a quella attuale. Tale parametro è proporzionale al numero di collisioni per unità di tempo. Per questo, le risorse computazionali necessarie a tutti i livelli della ricostruzione cresceranno notevolmente. Dunque, la collaborazione CMS ha cominciato già da alcuni anni ad esplorare le possibilità offerte dal calcolo eterogeneo, ovvero la pratica di distribuire la computazione tra CPU e altri acceleratori dedicati, come ad esempio schede grafiche (GPU). Una delle difficoltà di questo approccio è la necessità di scrivere, validare e mantenere codice diverso per ogni dispositivo su cui dovrà essere eseguito. Questa tesi presenta la possibilità di usare SYCL per tradurre codice per la ricostruzione di eventi in modo che sia eseguibile ed efficiente su diversi dispositivi senza modifiche sostanziali. SYCL è un livello di astrazione per il calcolo eterogeneo, che rispetta lo standard ISO C++. Questo studio si concentra sul porting di un algoritmo di clustering dei depositi di energia calorimetrici, CLUE, usando oneAPI, l'implementazione SYCL supportata da Intel. Inizialmente, è stato tradotto l'algoritmo nella sua versione standalone, principalmente per prendere familiarità con SYCL e per la comodità di confronto delle performance con le versioni già esistenti. In questo caso, le prestazioni sono molto simili a quelle di codice CUDA nativo, a parità di hardware. Per validare la fisica, l'algoritmo è stato integrato all'interno di una versione ridotta del framework usato da CMS per la ricostruzione. I risultati fisici sono identici alle altre implementazioni mentre, dal punto di vista delle prestazioni computazionali, in alcuni casi, SYCL produce codice più veloce di altri livelli di astrazione adottati da CMS, presentandosi dunque come una possibilità interessante per il futuro del calcolo eterogeneo nella fisica delle alte energie.
Resumo:
My thesis falls within the framework of physics education and teaching of mathematics. The objective of this report was made possible by using geometrical (in mathematics) and qualitative (in physics) problems. We have prepared four (resp. three) open answer exercises for mathematics (resp. physics). The test batch has been selected across two different school phases: end of the middle school (third year, 8\textsuperscript{th} grade) and beginning of high school (second and third year, 10\textsuperscript{th} and 11\textsuperscript{th} grades respectively). High school students achieved the best results in almost every problem, but 10\textsuperscript{th} grade students got the best overall results. Moreover, a clear tendency to not even try qualitative problems resolution has emerged from the first collection of graphs, regardless of subject and grade. In order to improve students' problem-solving skills, it is worth to invest on vertical learning and spiral curricula. It would make sense to establish a stronger and clearer connection between physics and mathematical knowledge through an interdisciplinary approach.
Resumo:
Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.