4 resultados para Non-Perturbative

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the fundamental ideas to study properties of QFTs with the functional Renormalization Group are presented and some examples illustrated. First the Wetterich equation for the effective average action and its flow in the local potential approximation (LPA) for a single scalar field is derived. This case is considered to illustrate some techniques used to solve the RG fixed point equation and study the properties of the critical theories in D dimensions. In particular the shooting methods for the ODE equation for the fixed point potential as well as the approach which studies a polynomial truncation with a finite number of couplings, which is convenient to study the critical exponents. We then study novel cases related to multi field scalar theories, deriving the flow equations for the LPA truncation, both without assuming any global symmetry and also specialising to cases with a given symmetry, using truncations based on polynomials of the symmetry invariants. This is used to study possible non perturbative solutions of critical theories which are extensions of known perturbative results, obtained in the epsilon expansion below the upper critical dimension.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.