6 resultados para Non-Gaussian dynamic models
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nel corso degli ultimi decenni la fisica sperimentale ha raggiunto notevoli traguardi nel campo della manipolazione di sistemi di atomi freddi, riaccendendo l'interesse della ricerca su sistemi a lungo studiati teoricamente, ma fino a poco tempo fa impossibili da realizzare sperimentalmente. Questa riaccesa attenzione ha permesso di sfruttare le moderne capacità di calcolo per studiare sistemi quantistici che ancora risultano di difficile realizzazione. In questo contesto si inserisce il rinnovato interesse per i sistemi quantistici monodimensionali caratterizzati dalla presenza di potenziale disordinato. Questi presentano proprietà di trasporto particolari e sotto particolari condizioni sono oggetto di una transizione di localizzazione. La maggior parte degli studi in questo campo rivolgono la loro attenzione a sistemi di particelle fermioniche interagenti. In questo lavoro di tesi analizziamo, invece, sistemi quantistici fermionici non interagenti, mettendo in luce quanto già noto e proponendo strumenti di analisi derivati dallo studio dei sistemi interagenti. In particolare, proponiamo un'analisi statistica dei livelli energetici e poniamo le basi per futuri studi a riguardo.
Resumo:
Recentemente sono stati valutati come fisicamente consistenti diversi modelli non-hermitiani sia in meccanica quantistica che in teoria dei campi. La classe dei modelli pseudo-hermitiani, infatti, si adatta ad essere usata per la descrizione di sistemi fisici dal momento che, attraverso un opportuno operatore metrico, risulta possibile ristabilire una struttura hermitiana ed unitaria. I sistemi PT-simmetrici, poi, sono una categoria particolarmente studiata in letteratura. Gli esempi riportati sembrano suggerire che anche le cosiddette teorie conformi non-unitarie appartengano alla categoria dei modelli PT-simmetrici, e possano pertanto adattarsi alla descrizione di fenomeni fisici. In particolare, si tenta qui la costruzione di determinate lagrangiane Ginzburg-Landau per alcuni modelli minimali non-unitari, sulla base delle identificazioni esistenti per quanto riguarda i modelli minimali unitari. Infine, si suggerisce di estendere il dominio del noto teorema c alla classe delle teorie di campo PT-simmetriche, e si propongono alcune linee per una possibile dimostrazione dell'ipotizzato teorema c_{eff}.
Resumo:
In the recent years, vibration-based structural damage identification has been subject of significant research in structural engineering. The basic idea of vibration-based methods is that damage induces mechanical properties changes that cause anomalies in the dynamic response of the structure, which measures allow to localize damage and its extension. Vibration measured data, such as frequencies and mode shapes, can be used in the Finite Element Model Updating in order to adjust structural parameters sensible at damage (e.g. Young’s Modulus). The novel aspect of this thesis is the introduction into the objective function of accurate measures of strains mode shapes, evaluated through FBG sensors. After a review of the relevant literature, the case of study, i.e. an irregular prestressed concrete beam destined for roofing of industrial structures, will be presented. The mathematical model was built through FE models, studying static and dynamic behaviour of the element. Another analytical model was developed, based on the ‘Ritz method’, in order to investigate the possible interaction between the RC beam and the steel supporting table used for testing. Experimental data, recorded through the contemporary use of different measurement techniques (optical fibers, accelerometers, LVDTs) were compared whit theoretical data, allowing to detect the best model, for which have been outlined the settings for the updating procedure.
Resumo:
In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.