2 resultados para Noise detection

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was the development of a new detection method of partial discharge (PD) activity in the stator of an electrical hybrid supercar fed by a silicon carbide converter, for which detection with common methods make it very difficult to separate PD pulses from switching noise. This work focused on the analysis and detection of partial discharges making use of an antenna, a peak detector, and an oscilloscope capable of capturing the electromagnetic pulses emitted during PD activity. Validation of the proposed method was done by comparing the partial discharge inception voltage (PDIV) detected by this system with the one obtained from an optical method of proven accuracy, with different rise times and samples. Further development of this method, if proved successful on a full stator, can help increasing the overall reliability of the car, potentially allowing for real time detection of PD activity and predictive maintenance before failure of the insulation system in a hybrid vehicle.