4 resultados para Nielsen, Poul Runge: EU markedsret
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Gli spazi di Teichmuller nacquero come risposta ad un problema posto diversi anni prima da Bernhard Riemann, che si domandò in che modo poter parametrizzare le strutture complesse supportate da una superficie fissata; in questo lavoro di tesi ci proponiamo di studiarli in maniera approfondita. Una superficie connessa, orientata e dotata di struttura complessa, prende il nome di superficie di Riemann e costituisce l’oggetto principe su cui si basa l’intero studio affrontato nelle pagine a seguire. Il teorema di uniformizzazione per le superfici di Riemann permette di fare prima distinzione netta tra esse, classificandole in superfici ellittiche, piatte o iperboliche. Due superfici di Riemann R ed S si dicono equivalenti se esiste un biolomorfismo f da R in S, e si dice che hanno la stessa struttura complessa. Certamente se le due superfici hanno genere diverso non possono essere equivalenti. Tuttavia, se R ed S sono superfci con lo stesso genere g ma non equivalenti, è comunque possibile dotare R di una struttura complessa, diversa dalla precedente, che la renda equivalente ad S. Questo permette di osservare che R è in grado di supportare diverse strutture complesse non equivalenti tra loro. Lo spazio di Teichmuller Tg di R è definito come lo spazio che parametrizza tutte le strutture complesse su R a meno di biolomorfismo. D’altra parte ogni superficie connessa, compatta e orientata di genere maggiore o uguale a 2 è in grado di supportare una struttura iperbolica. Il collegamento tra il mondo delle superfici di Riemann con quello delle superfici iperboliche è stato dato da Gauss, il quale provò che per ogni fissata superficie R le metriche iperboliche sono in corrispondenza biunivoca con le strutture complesse supportate da R stessa. Questo teorema permette di fornire una versione della definizione di Tg per superfici iperboliche; precisamente due metriche h1, h2 su R sono equivalenti se e soltanto se esiste un’isometria φ : (R, h1 ) −→ (R, h2 ) isotopa all’identità. Pertanto, grazie al risultato di Gauss, gli spazi di Teichmuller possono essere studiati sia dal punto di vista complesso, che da quello iperbolico.
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.