2 resultados para Niagara-Welland Power Company Limited

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) consist of a large number of sensor nodes, characterized by low power constraint, limited transmission range and limited computational capabilities [1][2].The cost of these devices is constantly decreasing, making it possible to use a large number of sensor devices in a wide array of commercial, environmental, military, and healthcare fields. Some of these applications involve placing the sensors evenly spaced on a straight line for example in roads, bridges, tunnels, water catchments and water pipelines, city drainages, oil and gas pipelines etc., making a special class of these networks which we define as a Linear Wireless Network (LWN). In LWNs, data transmission happens hop by hop from the source to the destination, through a route composed of multiple relays. The peculiarity of the topology of LWNs, motivates the design of specialized protocols, taking advantage of the linearity of such networks, in order to increase reliability, communication efficiency, energy savings, network lifetime and to minimize the end-to-end delay [3]. In this thesis a novel contention based Medium Access Control (MAC) protocol called L-CSMA, specifically devised for LWNs is presented. The basic idea of L-CSMA is to assign different priorities to nodes based on their position along the line. The priority is assigned in terms of sensing duration, whereby nodes closer to the destination are assigned shorter sensing time compared to the rest of the nodes and hence higher priority. This mechanism speeds up the transmission of packets which are already in the path, making transmission flow more efficient. Using NS-3 simulator, the performance of L-CSMA in terms of packets success rate, that is, the percentage of packets that reach destination, and throughput are compared with that of IEEE 802.15.4 MAC protocol, de-facto standard for wireless sensor networks. In general, L-CSMA outperforms the IEEE 802.15.4 MAC protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective for this thesis work was the deployment of a Neural Network based approach for video object detection on board a nano-drone. Furthermore, we have studied some possible extensions to exploit the temporal nature of videos to improve the detection capabilities of our algorithm. For our project, we have utilized the Mobilenetv2/v3SSDLite due to their limited computational and memory requirements. We have trained our networks on the IMAGENET VID 2015 dataset and to deploy it onto the nano-drone we have used the NNtool and Autotiler tools by GreenWaves. To exploit the temporal nature of video data we have tried different approaches: the introduction of an LSTM based convolutional layer in our architecture, the introduction of a Kalman filter based tracker as a postprocessing step to augment the results of our base architecture. We have obtain a total improvement in our performances of about 2.5 mAP with the Kalman filter based method(BYTE). Our detector run on a microcontroller class processor on board the nano-drone at 1.63 fps.