4 resultados para Neurone

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La distorsione della percezione della distanza tra due stimoli puntuali applicati sulla superfice della pelle di diverse regioni corporee è conosciuta come Illusione di Weber. Questa illusione è stata osservata, e verificata, in molti esperimenti in cui ai soggetti era chiesto di giudicare la distanza tra due stimoli applicati sulla superficie della pelle di differenti parti corporee. Da tali esperimenti si è dedotto che una stessa distanza tra gli stimoli è giudicata differentemente per diverse regioni corporee. Il concetto secondo cui la distanza sulla pelle è spesso percepita in maniera alterata è ampiamente condiviso, ma i meccanismi neurali che manovrano questa illusione sono, allo stesso tempo, ancora ampiamente sconosciuti. In particolare, non è ancora chiaro come sia interpretata la distanza tra due stimoli puntuali simultanei, e quali aree celebrali siano coinvolte in questa elaborazione. L’illusione di Weber può essere spiegata, in parte, considerando la differenza in termini di densità meccano-recettoriale delle differenti regioni corporee, e l’immagine distorta del nostro corpo che risiede nella Corteccia Primaria Somato-Sensoriale (homunculus). Tuttavia, questi meccanismi sembrano non sufficienti a spiegare il fenomeno osservato: infatti, secondo i risultati derivanti da 100 anni di sperimentazioni, le distorsioni effettive nel giudizio delle distanze sono molto più piccole rispetto alle distorsioni che la Corteccia Primaria suggerisce. In altre parole, l’illusione osservata negli esperimenti tattili è molto più piccola rispetto all’effetto prodotto dalla differente densità recettoriale che affligge le diverse parti del corpo, o dall’estensione corticale. Ciò, ha portato a ipotizzare che la percezione della distanza tattile richieda la presenza di un’ulteriore area celebrale, e di ulteriori meccanismi che operino allo scopo di ridimensionare – almeno parzialmente – le informazioni derivanti dalla corteccia primaria, in modo da mantenere una certa costanza nella percezione della distanza tattile lungo la superfice corporea. E’ stata così proposta la presenza di una sorta di “processo di ridimensionamento”, chiamato “Rescaling Process” che opera per ridurre questa illusione verso una percezione più verosimile. Il verificarsi di questo processo è sostenuto da molti ricercatori in ambito neuro scientifico; in particolare, dal Dr. Matthew Longo, neuro scienziato del Department of Psychological Sciences (Birkbeck University of London), le cui ricerche sulla percezione della distanza tattile e sulla rappresentazione corporea sembrano confermare questa ipotesi. Tuttavia, i meccanismi neurali, e i circuiti che stanno alla base di questo potenziale “Rescaling Process” sono ancora ampiamente sconosciuti. Lo scopo di questa tesi è stato quello di chiarire la possibile organizzazione della rete, e i meccanismi neurali che scatenano l’illusione di Weber e il “Rescaling Process”, usando un modello di rete neurale. La maggior parte del lavoro è stata svolta nel Dipartimento di Scienze Psicologiche della Birkbeck University of London, sotto la supervisione del Dott. M. Longo, il quale ha contribuito principalmente all’interpretazione dei risultati del modello, dando suggerimenti sull’elaborazione dei risultati in modo da ottenere un’informazione più chiara; inoltre egli ha fornito utili direttive per la validazione dei risultati durante l’implementazione di test statistici. Per replicare l’illusione di Weber ed il “Rescaling Proess”, la rete neurale è stata organizzata con due strati principali di neuroni corrispondenti a due differenti aree funzionali corticali: • Primo strato di neuroni (il quale dà il via ad una prima elaborazione degli stimoli esterni): questo strato può essere pensato come parte della Corteccia Primaria Somato-Sensoriale affetta da Magnificazione Corticale (homunculus). • Secondo strato di neuroni (successiva elaborazione delle informazioni provenienti dal primo strato): questo strato può rappresentare un’Area Corticale più elevata coinvolta nell’implementazione del “Rescaling Process”. Le reti neurali sono state costruite includendo connessioni sinaptiche all’interno di ogni strato (Sinapsi Laterali), e connessioni sinaptiche tra i due strati neurali (Sinapsi Feed-Forward), assumendo inoltre che l’attività di ogni neurone dipenda dal suo input attraverso una relazione sigmoidale statica, cosi come da una dinamica del primo ordine. In particolare, usando la struttura appena descritta, sono state implementate due differenti reti neurali, per due differenti regioni corporee (per esempio, Mano e Braccio), caratterizzate da differente risoluzione tattile e differente Magnificazione Corticale, in modo da replicare l’Illusione di Weber ed il “Rescaling Process”. Questi modelli possono aiutare a comprendere il meccanismo dell’illusione di Weber e dare così una possibile spiegazione al “Rescaling Process”. Inoltre, le reti neurali implementate forniscono un valido contributo per la comprensione della strategia adottata dal cervello nell’interpretazione della distanza sulla superficie della pelle. Oltre allo scopo di comprensione, tali modelli potrebbero essere impiegati altresì per formulare predizioni che potranno poi essere verificate in seguito, in vivo, su soggetti reali attraverso esperimenti di percezione tattile. E’ importante sottolineare che i modelli implementati sono da considerarsi prettamente come modelli funzionali e non intendono replicare dettagli fisiologici ed anatomici. I principali risultati ottenuti tramite questi modelli sono la riproduzione del fenomeno della “Weber’s Illusion” per due differenti regioni corporee, Mano e Braccio, come riportato nei tanti articoli riguardanti le illusioni tattili (per esempio “The perception of distance and location for dual tactile pressures” di Barry G. Green). L’illusione di Weber è stata registrata attraverso l’output delle reti neurali, e poi rappresentata graficamente, cercando di spiegare le ragioni di tali risultati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il progetto di ricerca che ho svolto in questi mesi si è focalizzato sull'integrazione dei risultati raggiunti grazie all'elaborazione di nuovi dati sperimentali. Questi sono stati prelevati dalla corteccia visiva di macachi, attraverso l'utilizzo di tecniche di registrazione elettro-fisiologiche mediante array di micro-elettrodi[25], durante la presentazionedi alcuni filmati (sequenze di immagini o frames). Attraverso la tecnica del clustering, dalle registrazioni degli esperimenti sono stati raggruppati gli spike appartenenti ad uno stesso neurone, sfruttando alcune caratteristiche come la forma del potenziale d'azione. Da questa elaborazione e stato possibile risalire a quali stimoli hanno prodotto una risposta neurale. I dati messi a disposizione da Ringach non potevano essere trattati direttamente con le tecniche della spike-triggered average e della spike-triggered covariance a causa di alcune loro caratteristiche. Utilizzando filtri di Gabor bidimensionali e l'energia di orientazione e stato pero possibile modellare la risposta di cellule complesse in corteccia visiva primaria. Applicare questi modelli su dati ad alta dimensionalita immagini molto grandi), sfruttando la tecnica di standardizzazione (Z-score), ha permesso di individuare la regione, la scala e l'orientazione all'interno del piano immagine dei profili recettivi delle cellule di cui era stata registrata l'attività neurale. Ritagliare tale regione e applicare la spike-triggered covariance su dati della giusta dimensionalita, permetterebbe di risalire ai profili recettivi delle cellule eccitate in un preciso momento, da una specifica immagine e ad una precisa scala e orientazione. Se queste ipotesi venissero confermate si potrebbe marcare e rafforzare la bontà del modello utilizzato per le cellule complesse in V1 e comprendere al meglio come avviene l'elaborazione delle immagini.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il funzionamento del cervello umano, organo responsabile di ogni nostra azione e pensiero, è sempre stato di grande interesse per la ricerca scientifica. Dopo aver compreso lo sviluppo dei potenziali elettrici da parte di nuclei neuronali in risposta a stimoli, si è riusciti a graficare il loro andamento con l'avvento dell'ElettroEncefaloGrafia (EEG). Tale tecnologia è entrata a far parte degli esami di routine per la ricerca di neuropsicologia e di interesse clinico, poiché permette di diagnosticare e discriminare i vari tipi di epilessia, la presenza di traumi cranici e altre patologie del sistema nervoso centrale. Purtroppo presenta svariati difetti: il segnale è affetto da disturbi e richiede un'adeguata elaborazione tramite filtraggio e amplificazione, rimanendo comunque sensibile a disomogeneità dei tessuti biologici e rendendo difficoltoso il riconoscimento delle sorgenti del segnale che si sono attivate durante l'esame (il cosiddetto problema inverso). Negli ultimi decenni la ricerca ha portato allo sviluppo di nuove tecniche d'indagine, di particolare interesse sono la ElettroEncefaloGrafia ad Alta Risoluzione (HREEG) e la MagnetoEncefaloGrafia (MEG). L'HREEG impiega un maggior numero di elettrodi (fino a 256) e l'appoggio di accurati modelli matematici per approssimare la distribuzione di potenziale elettrico sulla cute del soggetto, garantendo una migliore risoluzione spaziale e maggior sicurezza nel riscontro delle sorgenti neuronali. Il progresso nel campo dei superconduttori ha reso possibile lo sviluppo della MEG, che è in grado di registrare i deboli campi magnetici prodotti dai segnali elettrici corticali, dando informazioni immuni dalle disomogeneità dei tessuti e andando ad affiancare l'EEG nella ricerca scientifica. Queste nuove tecnologie hanno aperto nuovi campi di sviluppo, più importante la possibilità di comandare protesi e dispositivi tramite sforzo mentale (Brain Computer Interface). Il futuro lascia ben sperare per ulteriori innovazioni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi viene illustrato il modello BCM, formulato nel 1982 con l'intento di spiegare il fenomeno di apprendimento neuronale, definito come "plasticita sinaptica". Si passa successivamente ad una descrizione dettagliata del comportamento di un singolo neurone, per poi estendere la trattazione alle reti neuronali. L'esposizione degli argomenti viene effettuata considerando cellule esposte a distribuzioni di input linearmente indipendenti. Viene proposto infine un metodo per adattare il modello al caso linearmente dipendente.