5 resultados para Nares Strait
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A new study on suspension bridges has been prompted by the big disaster of the Tacoma Narrow Bridge at half its design speed. The aerodynamic instability of long-span bridges has been studied using wind tunnel tests. As a result of improved aerodynamic performance from the geometrical configuration of the bridge deck, the aerodynamic criteria for suspension and cable-stayed bridges have become well established in recent years, thereby allowing longer bridge spans to be developed. Although the Messina Strait Bridge has yet to be constructed, we are looking forward to evaluating the impact of different deck cross-sections on both aerodynamic stability and cost reduction. To further improve the aerodynamic characteristics of long-span suspension bridges, an optimized multi-box bridge deck model with two side decks for traffic lanes, two middle railway decks, and three gaps separating them has been proposed aerodynamic performance has been experimentally verified. 1:80 scale wind tunnel tests have been conducted. According to the current MIDAS Model, the first torsional and the first vertical frequency ratios are 1.27787 and 1.36[1] respectively. It is the torsional/vertical frequency ratio, combined with the deck aerodynamic properties, that determines the wind response properties of the bridge for the most dangerous possible form of aeroelastic instability. The classic flutter is caused by the coupling of torsional and vertical modes. Stabilizing cables to the deck could be a solution to this classic flutter by reducing lateral displacement of the deck and increasing frequency ratios. Stabilizing cables will be installed on the deck in three different orientations: vertical, inclined, and horizontal, with diameters of 80 cm, 60 cm, and 40 cm in each orientation respectively. An overview of the research undertaken on this topic will be presented, as well as the most important findings.
Resumo:
Population genetic and phylogeography of two common mediterranean species were studied in 10 localities located on the coasts of Toscana, Puglia and Calabria. The aim of the study was to verify the extent of genetic breaks, in areas recognized as boundaries between Mediterranean biogeographic sectors. From about 100 sequences obtained from the mitochondrial Cytochrome Oxidase subunit I (COI) gene of Halocynthia papillosa and Hexaplex trunculus genetic diversity, genetic structure at small and large distances and demographic history of both specieswere analyzed. No evidences of genetic breaks were found for the two species in Toscana and Puglia. The genetic structure of H. trunculus evidences the extent of a barrier to gene flow localized in Calabria, which could be represented by the Siculo-Tunisian Strait and the Strait of Messina. The observed patterns showed similar level of gene flow at small distances in both species, although the two species have different larval ecology. These results suggest that other factors, such as currents, local dynamics and seasonal temperatures, influence the connectivity along the Italian peninsula. The geographic distribution of the haplotypes shows that H. papillosacould represent a single genetic pool in expansion, whereas H. trunculus has two distinct genetic pools in expansion. The demographic pattern of the two species suggests that Pleistocene sea level oscillations, in particular of the LGM, may have played a key role in shaping genetic structure of the two species. This knowledge provides basic information, useful for the definition of management plans, or for the design of a network of marine protected areas along the Italian peninsula.
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.
Resumo:
The Great Barrier Reef hosts the only known reliable aggregation of dwarf minke whale (Balaenoptera acutorostrata subspecies) in Australian waters. While this short seasonal aggregation is quite predictable, the distribution and movements of the whales during the rest of their annual cycle are poorly understood. In particular, feeding and resting areas on their southward migration which are likely to be important have not been described. Using satellite telemetry data, I modelled the habitat use of seven whales during their southward migration through waters surrounding Tasmania. The whales were tagged with LIMPET satellite tags in the GBR in July 2013 (2 individuals) and 2014 (5 individuals). The study area around Tasmania was divided into 10km² cells and the time spent by each individual in each cell was calculated and averaged based on the number of animals using the cell. Two areas of high residency time were highlighted: south-western Bass Strait and Storm Bay (SE Tasmania). Remotely sensed ocean data were extracted for each cell and averaged temporally during the entire period of residency. Using Generalised Additive Models I explored the influence of key environmental characteristics. Nine predictors (bathymetry, distance from coast, distance from shore, gradient of sea surface temperature, sea surface height (absolute and variance), gradient of current speed, wind speed and chlorophyll-a concentration) were retained in the final model which explained 68% of the total variance. Regions of higher time-spent values were characterised by shallow waters, proximity to the coast (but not to the shelf break), high winds and sea surface height but low gradient of sea surface temperature. Given that the two high residency areas corresponded with regions where other marine predators also forage in Bass Strait and Storm Bay, I suggest the whales were probably feeding, rather than resting in these areas.
Resumo:
The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.