9 resultados para NO oxidation reaction

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucaric acid (GA) is one of the building block chemicals derived from sugar biomass with higher added value. Nowadays, GA is produced by oxidation of glucose (Glu) with either stoichiometric oxidants (HNO3), or by means of electrochemical or biochemical synthesis. However, these processes show drawbacks from either the environmental or economic viewpoint. For this reason, gold nanoparticles (Au NPs) supported on activated carbon (AC) have been studied as catalysts for the oxidation of Glu, using O2 as oxidant in the presence of a base. Using sol immobilization technique, Au NPs have been supported on AC following different experimental procedures. UV-Vis spectroscopy, XRD, TEM and TG analysis were utilized in the characterization of the catalysts. The operational conditions were optimized obtaining 24% of yield of GA, 37% to GO and 27% to byproducts in 1 h, 1000 rpm, 10 bar of O2 and Glu:Au:NaOH molar ratio of 1000:1:3000. Under such conditions, catalysts show relatively high Glu conversion (≥82%) with different GA yields. GO+GA yield is around 58-61%. Therefore, the oxidation reaction was performed at 15 min where Au/AC PVA0 reached the highest yield of GA (16%) and Au/AC PVA2.4 gave the lowest (8%). It is evident that the presence of PVA influences to a higher degree the reaction rate than the Au NPs size. Hence, the effect of different heat treatments where applied for the removal of PVA: washing with water at 60℃ or heat treatment (120-250℃) with Air/H2. Washing treatment and heat treatment at 120℃ with Air/H2 may have resulted in the mildest treatments for the removal of PVA. Finally, two different supports have been used in order to study the effect of metal-support interaction in the immobilization of Au NPs: ZrO2 and AC. Au/AC catalyst demonstrated a higher conversion of GO to GA at short reaction times (15.1% yield GA) compared to Au/ZrO2 (2.4% yield GA).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aminothiols are critical cellular components that play numerous and important roles in metabolism as key extracellular reducing agents, critical substrates for proteins synthesis and detoxificants of free radicals and peroxides. Because altered thiols levels in body fluids are linked to specific pathological conditions, their measurement is thus considered very important. One method to determine these compounds is the capillary electrophoresis, a technique that involves the separation of charged molecules on the basis of their movement under the influence of an applied electric field. The instrument used in this work is equipped with an amperometric detector recording the current of the thiols oxidized at the end of the capillary at a BDD electrode. The aim of this work is to find a valid method for the separations of the aminothiols analyzed, in terms of capillary coating and experimental conditions. In order to find an alternative and less expensive electrode than BDD and to increase sensitivity for the detection of the thiols, a modified electrode consisting in a carbon paste electrode containing Cobalt-phthalocyanine has been studied. In this electrode Cobalt-phthalocyanine works as electrocatalyst to enhance the oxidation reaction, meanwhile the graphite acts as conductive mean. This kind of electrode shows great sensibility and low detection limits for the thiols that have a free thiolic group, but it is not sensible to disulfides. The analysis of human plasma point out that the best method found for the capillary electrophoresis is not useful for the detection of aminothiols in a healthy person, because the very low concentrations in which they are present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of procedures for the iridium catalyzed C-H borylation of 1-aryl pyrazolopyrimidines and 1-aryl indazoles is reported. Investigation on the activity of the catalyst revealed the combination of an iridium (I) precursor and tetramethylphenantroline as the best catalytic system. Moreover, the procedures are regioselective resulting in the selective borylation of different C-H bonds within the substrates. The application of C-H borylation to late stage functionalization is demonstrated: a biologically active compound in AstraZeneca's project underwent tandem borylation/oxidation reaction, in order to obtain a functionalized product containing an OH group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cerium oxide in catalysis can be used both as support and as a catalyst itself. Ceria catalyses many oxidations reactions, its excellent catalytic properties are due to its store oxygen storage capacity (OSC) and the reticular defects present on its surface. Different morphologies expose different reticular planes, and different reticular planes can expose different amounts of defects. The preparation method of cerium oxide can influence the surface area, morphology, and the number of defects in the sample. This work is focused on different preparation methods for gold nanoparticles supported on 1D nanostructures of cerium oxide prepared via electrospinning, their XRD, DRUV-Vis and Raman characterizations, and their catalytic performance on the oxidation reaction of HMF to FDCA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MnHCF was synthesized by simple co-precipitation method. In this work we investigate the electrochemical behavior of manganese hexacyanoferrate in zinc sulfate (ZnSO4), ZnSO4+MnSO4 and zinc triflate (Zn(OTF)2) aqueous electrolytes. Electrochemical tests were performed by both El-cell which is designed for reflection investigation and coin cell. In cyclic voltammetry curves, we observed redox peaks of both Fe3+/2+ and Mn3+/2+ pairs. The results based on current shows that the capacity of battery is controlled by diffusion process in aqueous electrolyte system. MnHCF undergoes severe dissolution and zinc displacement during cycling. Compared to ZnSO4, anions of Zn (OTF)2 electrolyte are strongly adsorbed on the electrolyte surface, in turn hindering the water oxidation reaction and reducing the decomposition of MnHCF. The MnHCF/Zn battery using 3M Zn (OTF)2 delivers a specific capacity of 41 mAhg-1 at 50 mAg-1 while by using 3M ZnSO4+1M MnSO4 the specific capacity reaches to 400 mAhg-1 for the pure sample and around 250 mAhg-1 for the MnHCF+A. Our results suggest that the anions in the aqueous electrolyte are of great importance to optimize the electrochemical performance of metal hexacyanoferrates. The pre-addition of MnSO4 into ZnSO4 solution is capable of easing the Mn2+ dissolution from the cathode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, one of the most important scientific and environmental concern is to reduce global dependence on fossil fuels. The use of lignocellulosic biomass makes it possible to produce important platform molecules such as D-glucose, which is used to synthesize high value-added chemical products such as gluconic acid (GO) and glucaric acid (GA). Moreover, the electrocatalytic oxidation of glucose shows advantages compared to the classical synthesis route, such as the use of non-toxic reactants and milder conditions, making the process greener and more sustainable. In this work, electrocatalysts based on open-cell Ni metal foams were investigated for the glucose electrooxidation. They were used as supplied, oxidized at 500°C and 600°C, and after electrodeposition of Ni(OH)2. The electrocatalysts were characterized by cyclic voltammetry in NaOH solution 0.1M and in a basic D-glucose solution with different glucose concentrations (10mM and 50mM). The effect of the potential applied, the glucose concentration and the reaction time on conversion, selectivity and faradic efficiency were also investigated. 3D Ni electrocatalyst showed promising activity in the conversion of glucose towards gluconic acid, the sample calcined at 500°C showing the best results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important scientific and environmental issues is reducing global dependence on fossil sources and one of the solutions is to use biomass as feedstock. In particular, the use of lignocellulosic biomass to obtain molecules with considerable commercial importance is gaining more and more interest. Lignin, the most recalcitrant part of lignocellulosic biomass, is a valuable source of sustainable and renewable aromatic molecules, currently produced from petrochemical processes. Vanillin, one of the most important aromatic aldehydes on an industrial level, can be obtained through catalytic lignin oxidation. An alternative to the conventional catalytic oxidation process is the electro-catalytic process, which can be carried out at ambient temperature and pressure, using water as solvent, and it can be considered as a renewable energy storage. In this thesis, the electrocatalytic oxidation of Kraft and Dealkaline lignin in NaOH was investigated over Ni foam catalysts. The effect of the reaction parameters (i.e. time, applied potential, lignin concentration, NaOH concentration, and temperature) on the yields of vanillin and other valuable products was evaluated. After the screening of the reaction conditions, a systematic study of the contribution of the homogeneous reaction (lignin depolymerization due to the basic solvent) to the yield of the product was accomplished. Finally, considering the obtained results, an alternative reaction procedure was proposed.