3 resultados para Mutual Impedance
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.
Resumo:
La tomografia ad impedenza elettrica è un metodo di imaging relativamente nuovo che ha suscitato interesse in un ampia gamma di discipline, la sua portabilità, sicurezza e basso costo suggeriscono che potrebbe risolvere diversi problemi clinici. Matematicamente il problema dell'EIT può essere suddiviso in un problema in avanti e uno inverso. Il problema forward, si basa su un'equazione differenziale parziale ellittica, e definisce l'insieme delle tensioni misurate a partire da una distribuzione nota di conducibilità. Il problema inverso è modellato come un problema dei minimi quadrati non lineare, in cui si cerca di ridurre al minimo la differenza tra le tensioni misurate e quelle generate dalla conducibilità ricostruita. Il problema inverso è mal posto e porta ad una soluzione che non dipende con continuità dai dati e quindi le tecniche di ricostruzione richiedono l'introduzione di un termine di regolarizzazione. L'elaborato si concentra sulle strategie algoritmiche per il problema inverso e sulla realizzazione di un'interfaccia grafica in grado di settare i parametri e confrontare velocemente i metodi proposti. Il progetto nella sua visione più ampia vorrebbe utilizzare le strategie algoritmiche proposte per dati ottenuti dal sistema prodotto dall'Università di Bologna nel laboratorio di Ingegneria Cellulare e Molecolare (ICM) di Cesena. I risultati dei test consentono di delineare quali siano gli strumenti migliori per poter arrivare ad una corretta ricostruzione dell'immagine nonché suggerire possibili miglioramenti della configurazione hardware al fine arrivare a risultati sperimentali completi.
Resumo:
Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.