3 resultados para Multicommutation flow systems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This study investigates the growth and metabolite production of microorganisms causing spoilage of Atlantic cod (Gadus morhua) fillets packaged under air and modified atmosphere (60 % CO2, 40 % O2). Samples were provided by two different retailers (A and B). Storage of packaged fillets occurred at 4 °C and 8 °C. Microbiological quality and metabolite production of cod fillets stored in MAP 4 °C, MAP 8 °C and air were monitored during 13 days, 7 days and 3 days of storage, respectively. Volatile compounds concentration in the headspace were quantified by Selective ion flow tube mass spectrometry and a correlation with microbiological spoilage was studied. The onset of volatile compounds detection was observed to be mostly around 7 log cfu/g of total psychrotrophic count. Trimethylamine and dimethyl sulfide were found to be the dominant volatiles in all of the tested storage conditions, nevertheless there was no close correlation between concentrations of each main VOC and percentages of rejection based on sensory evaluation. According to results it was concluded that they cannot be considered as only indicators of the quality of cod fillets stored in modified atmosphere and air.
Resumo:
The research work presented in the thesis describes a new methodology for the automated near real-time detection of pipe bursts in Water Distribution Systems (WDSs). The methodology analyses the pressure/flow data gathered by means of SCADA systems in order to extract useful informations that go beyond the simple and usual monitoring type activities and/or regulatory reporting , enabling the water company to proactively manage the WDSs sections. The work has an interdisciplinary nature covering AI techniques and WDSs management processes such as data collection, manipulation and analysis for event detection. Indeed, the methodology makes use of (i) Artificial Neural Network (ANN) for the short-term forecasting of future pressure/flow signal values and (ii) Rule-based Model for bursts detection at sensor and district level. The results of applying the new methodology to a District Metered Area in Emilia- Romagna’s region, Italy have also been reported in the thesis. The results gathered illustrate how the methodology is capable to detect the aforementioned failure events in fast and reliable manner. The methodology guarantees the water companies to save water, energy, money and therefore enhance them to achieve higher levels of operational efficiency, a compliance with the current regulations and, last but not least, an improvement of customer service.
Resumo:
The first goal of this study is to analyse a real-world multiproduct onshore pipeline system in order to verify its hydraulic configuration and operational feasibility by constructing a simulation model step by step from its elementary building blocks that permits to copy the operation of the real system as precisely as possible. The second goal is to develop this simulation model into a user-friendly tool that one could use to find an “optimal” or “best” product batch schedule for a one year time period. Such a batch schedule could change dynamically as perturbations occur during operation that influence the behaviour of the entire system. The result of the simulation, the ‘best’ batch schedule is the one that minimizes the operational costs in the system. The costs involved in the simulation are inventory costs, interface costs, pumping costs, and penalty costs assigned to any unforeseen situations. The key factor to determine the performance of the simulation model is the way time is represented. In our model an event based discrete time representation is selected as most appropriate for our purposes. This means that the time horizon is divided into intervals of unequal lengths based on events that change the state of the system. These events are the arrival/departure of the tanker ships, the openings and closures of loading/unloading valves of storage tanks at both terminals, and the arrivals/departures of trains/trucks at the Delivery Terminal. In the feasibility study we analyse the system’s operational performance with different Head Terminal storage capacity configurations. For these alternative configurations we evaluated the effect of different tanker ship delay magnitudes on the number of critical events and product interfaces generated, on the duration of pipeline stoppages, the satisfaction of the product demand and on the operative costs. Based on the results and the bottlenecks identified, we propose modifications in the original setup.