9 resultados para Multi-Agent Model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.
Resumo:
Negli ultimi anni le tecnologie informatiche sono state al centro di uno sviluppo esponenziale. Fra le incalcolabili innovazioni presentate, ha preso sempre più campo il paradigma per la programmazione ad agenti, che permette la realizzazione di sistemi software complessi, i quali, nell'informatica moderna, ricoprono un ruolo di fondamentale importanza. Questi sistemi, denominati autonomi, mostrano caratteristiche interessanti per scenari dinamici; essi infatti devono essere robusti e resistenti, in grado di adattarsi al contesto ambientale e quindi reagire a determinate modifiche che si verificano nell'ambiente, comportandosi di conseguenza. Indicano perciò la pro-attività dell'entità presa in considerazione. In questa tesi saranno spiegate queste tipologie di sistemi, introdotte le loro caratteristiche e mostrate le loro potenzialità. Tali caratteristiche permettono di responsabilizzare i soggetti, rendendo il sistema auto-organizzato, con una migliore scalabilità e modularità, riducendo quindi le elevate esigenze di calcolo. L'organizzazione di questo documento prevede i primi capitoli atti a introdurre il mondo dei sistemi autonomi, partendo dalle definizioni di autonomia e di agenti software, concludendo con i sistemi multi-agenti, allo scopo di permettere al lettore una comprensione adatta ed esaustiva. I successivi capitoli riguardano le fasi di progettazione delle entità prese in esame, le loro forme di standardizzazione e i modelli che possono adottare, tra i quali il più conosciuto, il modello BDI. Ne seguono due diverse metodologie per l'ingegneria del software orientata agli agenti. Si conclude con la presentazione dello stato dell'arte degli ambienti di sviluppo conosciuti, contenente un'esauriente introduzione ad ognuno di essi ed una visione nel mondo del lavoro del loro apporto negli applicativi in commercio. Infine la tesi terminerà con un capitolo di conclusioni e di riflessioni sui possibili aspetti futuri.
Resumo:
Lo scopo della ricerca è quello di sviluppare un metodo di design che integri gli apporti delle diverse discipline di architettura, ingegneria e fabbricazione all’interno del progetto, utilizzando come caso di studio l’uso di una tettonica ad elementi planari in legno per la costruzione di superfici a guscio da utilizzare come padiglioni temporanei. La maniera in cui ci si propone di raggiungere tale scopo è tramite l’utilizzo di un agent based system che funge da mediatore tra i vari obbiettivi che si vogliono considerare, in questo caso tra parametri estetici, legati alla geometria scelta, e di fabbricazione. Si sceglie di applicare questo sistema allo studio di una struttura a guscio, che grazie alla sua naturale rigidezza integra forma e capacità strutturale, tramite una tassellazione planare della superficie stessa. Il sistema studiato si basa sull’algoritmo di circle relaxation, che viene integrato tramite dei comportamenti che tengano conto della curvatura della superficie in questione e altri comportamenti scelti appositamente per agevolare il processo di tassellazione tramite tangent plane intersection. La scelta di studiare elementi planari è finalizzata ad una maggiore facilità di fabbricazione ed assemblaggio prevedendo l’uso di macchine a controllo numerico per la fabbricazione e un assemblaggio interamente a secco e che non necessita di impalcature . Il risultato proposto è quello quindi di un padiglione costituito da elementi planari ricomponibili in legno, con particolare attenzione alla facilità e velocità di montaggio degli stessi, utile per possibili strutture temporanee e/o di emergenza.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
Il sempre crescente numero di applicazioni di reti di sensori, robot cooperanti e formazioni di veicoli, ha fatto sì che le problematiche legate al coordinamento di sistemi multi-agente (MAS) diventassero tra le più studiate nell’ambito della teoria dei controlli. Esistono numerosi approcci per affrontare il problema, spesso profondamente diversi tra loro. La strategia studiata in questa tesi è basata sulla Teoria del Consenso, che ha una natura distribuita e completamente leader-less; inoltre il contenuto informativo scambiato tra gli agenti è ridotto al minimo. I primi 3 capitoli introducono ed analizzano le leggi di interazione (Protocolli di Consenso) che permettono di coordinare un Network di sistemi dinamici. Nel capitolo 4 si pensa all'applicazione della teoria al problema del "loitering" circolare di più robot volanti attorno ad un obiettivo in movimento. Si sviluppa a tale scopo una simulazione in ambiente Matlab/Simulink, che genera le traiettorie di riferimento di raggio e centro impostabili, a partire da qualunque posizione iniziale degli agenti. Tale simulazione è stata utilizzata presso il “Center for Research on Complex Automated Systems” (CASY-DEI Università di Bologna) per implementare il loitering di una rete di quadrirotori "CrazyFlie". I risultati ed il setup di laboratorio sono riportati nel capitolo 5. Sviluppi futuri si concentreranno su algoritmi locali che permettano agli agenti di evitare collisioni durante i transitori: il controllo di collision-avoidance dovrà essere completamente indipendente da quello di consenso, per non snaturare il protocollo di Consenso stesso.
Resumo:
The ability to create hybrid systems that blend different paradigms has now become a requirement for complex AI systems usually made of more than a component. In this way, it is possible to exploit the advantages of each paradigm and exploit the potential of different approaches such as symbolic and non-symbolic approaches. In particular, symbolic approaches are often exploited for their efficiency, effectiveness and ability to manage large amounts of data, while symbolic approaches are exploited to ensure aspects related to explainability, fairness, and trustworthiness in general. The thesis lies in this context, in particular in the design and development of symbolic technologies that can be easily integrated and interoperable with other AI technologies. 2P-Kt is a symbolic ecosystem developed for this purpose, it provides a logic-programming (LP) engine which can be easily extended and customized to deal with specific needs. The aim of this thesis is to extend 2P-Kt to support constraint logic programming (CLP) as one of the main paradigms for solving highly combinatorial problems given a declarative problem description and a general constraint-propagation engine. A real case study concerning school timetabling is described to show a practical usage of the CLP(FD) library implemented. Since CLP represents only a particular scenario for extending LP to domain-specific scenarios, in this thesis we present also a more general framework: Labelled Prolog, extending LP with labelled terms and in particular labelled variables. The designed framework shows how it is possible to frame all variations and extensions of LP under a single language reducing the huge amount of existing languages and libraries and focusing more on how to manage different domain needs using labels which can be associated with every kind of term. Mapping of CLP into Labeled Prolog is also discussed as well as the benefits of the provided approach.
Resumo:
In questo studio, un multi-model ensemble è stato implementato e verificato, seguendo una delle priorità di ricerca del Subseasonal to Seasonal Prediction Project (S2S). Una regressione lineare è stata applicata ad un insieme di previsioni di ensemble su date passate, prodotte dai centri di previsione mensile del CNR-ISAC e ECMWF-IFS. Ognuna di queste contiene un membro di controllo e quattro elementi perturbati. Le variabili scelte per l'analisi sono l'altezza geopotenziale a 500 hPa, la temperatura a 850 hPa e la temperatura a 2 metri, la griglia spaziale ha risoluzione 1 ◦ × 1 ◦ lat-lon e sono stati utilizzati gli inverni dal 1990 al 2010. Le rianalisi di ERA-Interim sono utilizzate sia per realizzare la regressione, sia nella validazione dei risultati, mediante stimatori nonprobabilistici come lo scarto quadratico medio (RMSE) e la correlazione delle anomalie. Successivamente, tecniche di Model Output Statistics (MOS) e Direct Model Output (DMO) sono applicate al multi-model ensemble per ottenere previsioni probabilistiche per la media settimanale delle anomalie di temperatura a 2 metri. I metodi MOS utilizzati sono la regressione logistica e la regressione Gaussiana non-omogenea, mentre quelli DMO sono il democratic voting e il Tukey plotting position. Queste tecniche sono applicate anche ai singoli modelli in modo da effettuare confronti basati su stimatori probabilistici, come il ranked probability skill score, il discrete ranked probability skill score e il reliability diagram. Entrambe le tipologie di stimatori mostrano come il multi-model abbia migliori performance rispetto ai singoli modelli. Inoltre, i valori più alti di stimatori probabilistici sono ottenuti usando una regressione logistica sulla sola media di ensemble. Applicando la regressione a dataset di dimensione ridotta, abbiamo realizzato una curva di apprendimento che mostra come un aumento del numero di date nella fase di addestramento non produrrebbe ulteriori miglioramenti.
Resumo:
Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.