2 resultados para Moving least squares

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study a model for the breast image reconstruction in Digital Tomosynthesis, that is a non-invasive and non-destructive method for the three-dimensional visualization of the inner structures of an object, in which the data acquisition includes measuring a limited number of low-dose two-dimensional projections of an object by moving a detector and an X-ray tube around the object within a limited angular range. The problem of reconstructing 3D images from the projections provided in the Digital Tomosynthesis is an ill-posed inverse problem, that leads to a minimization problem with an object function that contains a data fitting term and a regularization term. The contribution of this thesis is to use the techniques of the compressed sensing, in particular replacing the standard least squares problem of data fitting with the problem of minimizing the 1-norm of the residuals, and using as regularization term the Total Variation (TV). We tested two different algorithms: a new alternating minimization algorithm (ADM), and a version of the more standard scaled projected gradient algorithm (SGP) that involves the 1-norm. We perform some experiments and analyse the performance of the two methods comparing relative errors, iterations number, times and the qualities of the reconstructed images. In conclusion we noticed that the use of the 1-norm and the Total Variation are valid tools in the formulation of the minimization problem for the image reconstruction resulting from Digital Tomosynthesis and the new algorithm ADM has reached a relative error comparable to a version of the classic algorithm SGP and proved best in speed and in the early appearance of the structures representing the masses.