3 resultados para Morphological data
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The following thesis attempts to study and analyse the geomorphological evolution of a relatively small coastal area located to the North of Syracuse (Southeastern Sicily). The presently inactive Palombara Cave is located in this area. The 800 metres of passages in this cave show an evolution in some way linked to the local topographic and environmental changes. This portion of coastline was affected more or less constantly by the tectonic uplift during the Pleistocene, which simultaneously to the eustatic variations have played a key role in the genesis of the marine terraces and the cave. Starting from a DTM made from Lidar data, using a GIS procedure several marine terraces have been mapped. These informations combinated with a geomorphological study of the area, allowed to identify and recognise the different orders of the Middle Pleistocene terraced surfaces. Four orders of terraces between 180-75 m a.s.l have been observed, illustrated and described. Furthermore, two other supposed terrace edges located respectively at 60 and 35 m, which would indicate the presence of two more orders, have been recognised. All these marine terraces appear to have formed in the last million years. The morphological data of the Palombara cave, highlights a genesis related to the rising of CO2 rich waters coming from the depths through the fractures of the rock mass, that ranks it as a hypogenic cave. The development has been influenced by the changes in the water table, in turn determined by the fluctuations in the sea level. In fact, the cave shows a speleogenetic evolution characterised by phases of karstification in phreatic and epiphreatic environment and fossilization stages of the upper branches in vadose conditions. These observations indicate that the cave probably started forming around 600 Ky ago, contemporary to the start of volcanic processes in the area.
Resumo:
In this study the population structure and connectivity of the Mediterranean and Atlantic Raja clavata (L., 1758) were investigated by analyzing the genetic variation of six population samples (N = 144) at seven nuclear microsatellite loci. The genetic dataset was generated by selecting population samples available in the tissue databases of the GenoDREAM laboratory (University of Bologna) and of the Department of Life Sciences and Environment (University of Cagliari), all collected during past scientific surveys (MEDITS, GRUND) from different geographical locations in the Mediterranean basin and North-east Atlantic sea, as North Sea, Sardinian coasts, Tuscany coasts and Cyprus Island. This thesis deals with to estimate the genetic diversity and differentiation among 6 geographical samples, in particular, to assess the presence of any barrier (geographic, hydrogeological or biological) to gene flow evaluating both the genetic diversity (nucleotide diversity, observed and expected heterozygosity, Hardy- Weinberg equilibrium analysis) and population differentiation (Fst estimates, population structure analysis). In addition to molecular analysis, quantitative representation and statistical analysis of morphological individuals shape are performed using geometric morphometrics methods and statistical tests. Geometric coordinates call landmarks are fixed in 158 individuals belonging to two population samples of Raja clavata and in population samples of closely related species, Raja straeleni (cryptic sibling) and Raja asterias, to assess significant morphological differences at multiple taxonomic levels. The results obtained from the analysis of the microsatellite dataset suggested a geographic and genetic separation between populations from Central-Western and Eastern Mediterranean basins. Furthermore, the analysis also showed that there was no separation between geographic samples from North Atlantic Ocean and central-Western Mediterranean, grouping them to a panmictic population. The Landmark-based geometric morphometry method results showed significant differences of body shape able to discriminate taxa at tested levels (from species to populations).
Resumo:
In the last years technologies related to photovoltaic energy have rapidly developed and the interest on renewable energy power source substantially increased. In particular, cost reduction and appropriate feed-in tariff contributed to the increase of photovoltaic installation, especially in Germany and Italy. However, for several technologies, the observed experimental efficiency of solar cells is still far from the theoretical maximum efficiency, and thus there is still room for improvement. In this framework the research and development of new materials and new solar devices is mandatory. In this thesis the morphological and optical properties of thin films of nanocrystalline silicon oxynitride (nc-SiON) have been investigated. This material has been studied in view of its application in Si based heterojunction solar cells (HIT). Actually, a-Si:H is used now in these cells as emitter layer. Amorphous SiO_x N_y has already shown excellent properties, such as: electrical conductivity, optical energy gap and transmittance higher than the ones of a-Si:H. Nc-SiO_x N_y has never been investigated up to now, but its properties can surpass the ones of amorphous SiON. The films of nc-SiON have been deposited at the University of Konstanz (Germany). The properties of these films have been studied using of atomic force microscopy and optical spectroscopy methods. This material is highly complex as it is made by different coexisting phases. The main purpose of this thesis is the development of methods for the analyses of morphological and optical properties of nc-SiON and the study of the reliability of those methods to the measurement of the characteristics of these silicon films. The collected data will be used to understand the evolution of the properties of nc-SiON, as a function of the deposition parameters. The results here obtained show that nc-SiON films have better properties with respect to both a-Si:H and a-SiON, i. e. higher optical band-gap and transmittance. In addition, the analysis of the variation of the observed properties as a function of the deposition parameters allows for the optimization of deposition conditions for obtaining optimal efficiency of a HIT cell with SiON layer.