6 resultados para Monomer conversion
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nella tesi sono trattate due famiglie di modelli meccanico statistici su vari grafi: i modelli di spin ferromagnetici (o di Ising) e i modelli di monomero-dimero. Il primo capitolo è dedicato principalmente allo studio del lavoro di Dembo e Montanari, in cui viene risolto il modello di Ising su grafi aleatori. Nel secondo capitolo vengono studiati i modelli di monomero-dimero, a partire dal lavoro di Heilemann e Lieb,con l'intento di dare contributi nuovi alla teoria. I principali temi trattati sono disuguaglianze di correlazione, soluzioni esatte su alcuni grafi ad albero e sul grafo completo, la concentrazione dell'energia libera intorno al proprio valor medio sul grafo aleatorio diluito di Erdös-Rényi.
Resumo:
Due to the high price of natural oil and harmful effects of its usage, as the increase in emission of greenhouse gases, the industry focused in searching of sustainable types of the raw materials for production of chemicals. Ethanol, produced by fermentation of sugars, is one of the more interesting renewable materials for chemical manufacturing. There are numerous applications for the conversion of ethanol into commodity chemicals. In particular, the production of 1,3-butadiene whose primary source is ethanol using multifunctional catalysts is attractive. With the 25% of world rubber manufacturers utilizing 1,3-butadiene, there is an exigent need for its sustainable production. In this research, the conversion of ethanol in one-step process to 1,3-butadiene was studied. According to the literature, the mechanisms which were proposed to explain the way ethanol transforms into butadiene require to have both acid and basic sites. But still, there are a lot of debate on this topic. Thus, the aim of this research work is a better understanding of the reaction pathways with all the possible intermediates and products which lead to the formation of butadiene from ethanol. The particular interests represent the catalysts, based on different ratio Mg/Si in comparison to bare magnesia and silica oxides, in order to identify a good combination of acid/basic sites for the adsorption and conversion of ethanol. Usage of spectroscopictechniques are important to extract information that could be helpful for understanding the processes on the molecular level. The diffuse reflectance infrared spectroscopy coupled to mass spectrometry (DRIFT-MS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Whereas, mass spectrometry was used to monitor the desorbed products. The set of studied materials include MgO, Mg/Si=0.1, Mg/Si=2, Mg/Si=3, Mg/Si=9 and SiO2 which were also characterized by means of surface area measurements.
Resumo:
The present work started a research project aimed at the synthesis of conformationally “locked” PNA (Peptide Nucleic Acids) monomers. Compared to classic aeg-PNA, this structural modification would result in an improvement in the pairing properties with natural nucleic acids, due to entropic variations in the process. Specifically, an attempt was made to build a PNA monomer around a β-lactam ring. That ring could be imagined as obtained by linking the methylene groups in α position of both the nucleobase and the carboxyl function. These structural properties would imply pre-organization of the final oligomer, improving the pairing process in biological systems. The first step of this work was the investigation of the Staudinger reaction for the ciclization of the lactam ring, and in particular the activation method of the carboxylic group of the nucleobase derivatives. Use of triazine chloride led to the synthesis of the adenine-based β-lactam-PNA. Attempts to synthesize the same monomer based on cytosine, guanine and thymine were unsuccessful, so alternative methods for carboxylic group activation were investigated. Conversion of carboxylic acids to acyl chlorides led to a partial result: despite the method worked well with analogues of the final reactants, it didn’t worked with substrates needed for lactam based PNAs. Search for a valid activation process continued involving carbonyl diimidazole, Mukayama reagent, and LDA (with methylester derivative of nucelobase) without good results. Last, it was investigated a different synthetic approach by first synthesizing a proper backbone with a chlorine in the β- lactam ring. This chlorine ring should undergo substitution by a nucleobase anion to give the desired PNA monomer. Unluckily also this synthetic route didn’t lead to the desired monomers.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
Il compressed sensing è un’innovativa tecnica per l’acquisizione dei dati, che mira all'estrazione del solo contenuto informativo intrinseco di un segnale. Ciò si traduce nella possibilità di acquisire informazione direttamente in forma compressa, riducendo la quantità di risorse richieste per tale operazione. In questa tesi è sviluppata un'architettura hardware per l'acquisizione di segnali analogici basata sul compressed sensing, specializzata al campionamento con consumo di potenza ridotto di segnali biomedicali a basse frequenze. Lo studio è svolto a livello di sistema mediante l'integrazione della modulazione richiesta dal compressed sensing in un convertitore analogico-digitale ad approssimazioni successive, modificandone la logica di controllo. Le prestazioni risultanti sono misurate tramite simulazioni numeriche e circuitali. Queste confermano la possibilità di ridurre la complessità hardware del sistema di acquisizione rispetto allo stato dell'arte, senza alterarne le prestazioni.
Resumo:
This thesis investigates the synthesis of polymeric ionic liquid [(poly-acryloyloxy)6C6C1im][NTf2], by free radical polymerization of acryloyl imidazolium-base ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2]. Moreover, the smartest synthetic route to obtain this monomer was investigated. Two different synthesis were compared. The first one started from the preparation of the monomer 6-chlorohexyl acrylate followed by substitution and metathesis to reach ionic liquid monomer. The second one started from synthesis of the ionic liquid [(HO)6C6C1im]Cl followed by metathesis and esterification in order to get ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2].