2 resultados para Molecular device

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The family Hyalidae comprises more than one hundred species, distributed worldwide. They are common and abundant in the littoral and shallow sublittoral habitats and they play an important role in the coastal food chain. Most studies about this family were dealing with taxonomy and ecology, while very little is known about phylogenetic relationship among genera and species. In the present study we aim to achieve the first approach of the phylogenetic patterns of this family in NE Atlantic Ocean and Mediterranean Sea, and to perform the first insight into the phylogeography Apohyale prevostii along both the North Atlantic coasts. In order to do that, eight species belonging to the genera Apohyale, Hyale, Serejohyale and Protohyale were investigated using the mitochondrial COI-5P barcode region. Specimens were collected along European and Moroccan Atlantic rocky shores, including Iceland, the British Isles, Macaronesia and in the Mediterranean Sea. Sequences of A. prevostii, from the NW Atlantic Ocean, available in BOLD and GenBank, were retrieved. As expected, phylogenetic analyses showed highly-divergent clades, clearly discriminating among different species clusters, confirming their morphology-based identifications. Although, within A. perieri, A. media, A. stebbingi, P. (Protohyale) schmidtii and S. spinidactylus, high genetic diversity was found, revealing putative cryptic species. The clade of A. prevostii and A. stebbingi appears well supported and divided from the other two congeneric species, and P. (Protohyale) schmidtii shows a basal divergence. The north-western Atlantic coasts were recently colonized by A. prevostii after the last glacial maximum from the European populations showing also a common haplotype in every population analysed. The use of the COI-5P as DNA barcode provided a good tool to underline the necessity of a revision of this emblematic family, as well as to discern taxonomically the possible new species flagged with this molecular device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alignement and anchoring of liquid crystals on solid surfaces is a key problem for modern device technology that until now has been treated empirically, but that can now be tackled by atomistic computer simulations. Molecular dynamics (MD) simulations were used in this thesis work to study two films of 7 and 8 n-alkyl-4’cyanobiphenyl (7CB and 8CB) liquid crystals , with a thickness of 15 nm, confined between two (001) surfaces of MoS2 (molybdenite). The isotropic and nematic phases of both liquid crystals were simulated, and the resulting structures characterized structurally. A new force field was designed to model the interactions between the liquid crystal (LC) molecules and the surface of molybdenite, while an accurate force field developed previously was used to model the 7CB and 8CB molecules. The results show that the (001) molybdenite surface induces a planar orientation in both the liquid crystals. For the nematic phase of 8CB, one of the two solid/LC interfaces is composed of a first layer of molecules aligned parallel to the surface, followed by a second layer of molecules aligned perpendicular to the surface (also called, homeotropic). The effect of the surface appears to be local in nature as it is confined to the first 15 Angström of the LC film. Conversely, for the nematic phase of 7CB, a planar ordering is established into the LC film. The LC molecules at the interface with the molybdenite appear to align preferentially their alkyl chains toward the solid substrate. The resulting tilt angle of molecules was found to be in good agreement with experimental measurements available in literature. Despite the fact that the MD simulations spanned a time range of more than 100 ns, the nematic phases of both 7CB and 8CB were found not to be completely formed. In order to confirm the findings presented in this thesis, we propose to extend the current study.