4 resultados para Moduli in modern mapping theory
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Some of the most interesting phenomena that arise from the developments of the modern physics are surely vacuum fluctuations. They appear in different branches of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics, Atomic and Molecular Physics, and also in Mathematical Physics. One of the most important of these vacuum fluctuations, sometimes called "zero-point energy", as well as one of the easiest quantum effect to detect, is the so-called Casimir effect. The purposes of this thesis are: - To propose a simple retarded approach for dynamical Casimir effect, thus a description of this vacuum effect when we have moving boundaries. - To describe the behaviour of the force acting on a boundary, due to its self-interaction with the vacuum.
Resumo:
Ho studiato la possibilità di soluzione per il problema cosmologico dei moduli (CMP) presente a causa della compattificazione delle dimensioni extra tramite un periodo di inflazione a basse energie (Thermal Inflation). L'elaborato consta di cinque capitoli. Il primo introduce il lettore alla problematica dei moduli partendo dalla teoria Kaluza-Klein. Il secondo riguarda interamente il CMP e altri problemi cosmologici associati ai moduli. Nel terzo viene descritta la thermal inflation e le condizioni di funzionamento. Nel quarto capitolo viene preso in esame il problema di stabilizzazione dei moduli nella teoria di stringa tipo IIB: vengono descritti sia il meccanismo KKTL che il LVS. L'ultimo capitolo consiste nel calcolo della diluizione dei moduli, enunciata prima in un contesto generale e infine applicata al LVS, tramite la thermal inflation. Viene altresì presa in esame la possibilità di due epoche di thermal inflation, al fine di ottenere una diluizione più efficiente dei moduli. In LVS sono presenti due moduli, differenti per massa e vita media. Il più leggero è soggetto al CMP e si trova che, anche dopo due periodi di thermal inflation vi è ancora un numero eccessivo di tali campi, in quanto se da un lato la thermal inflation ne diliusca la densità iniziale, dall'altro ne causa una forte riproduzione, dovuta essenzialmente alle caratteristiche del modulo
Resumo:
This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).