4 resultados para Modified Direct Analysis Method

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.