5 resultados para Modern physics teaching
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Some of the most interesting phenomena that arise from the developments of the modern physics are surely vacuum fluctuations. They appear in different branches of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics, Atomic and Molecular Physics, and also in Mathematical Physics. One of the most important of these vacuum fluctuations, sometimes called "zero-point energy", as well as one of the easiest quantum effect to detect, is the so-called Casimir effect. The purposes of this thesis are: - To propose a simple retarded approach for dynamical Casimir effect, thus a description of this vacuum effect when we have moving boundaries. - To describe the behaviour of the force acting on a boundary, due to its self-interaction with the vacuum.
Resumo:
Ultracold dilute gases occupy an important role in modern physics and they are employed to verify fundamental quantum theories in most branches of theoretical physics. The scope of this thesis work is the study of Bose-Fermi (BF) mixtures at zero temperature with a tunable pairing between bosons and fermions. The mixtures are treated with diagrammatic quantum many-body methods based on the so-called T-matrix formalism. Starting from the Fermi-polaron limit, I will explore various values of relative concentrations up to mixtures with a majority of bosons, a case barely considered in previous works. An unexpected quantum phase transition is found to occur in a certain range of BF coupling for mixture with a slight majority of bosons. The mechanical stability of mixtures has been analysed, when the boson-fermion interaction is changed from weak to strong values, in the light of experimental results recently obtained for a double-degenerate Bose-Fermi mixture of 23 Na - 40 K. A possible improvement in the description of the boson-boson repulsion based on Popov's theory is proposed. Finally, the effects of a harmonic trapping potential are described, with a comparison with the experimental data for the condensate fraction recently obtained for a trapped 23 Na - 40 K mixture.
Resumo:
Nella tesi è analizzata nel dettaglio una proposta didattica sulla Fisica Quantistica elaborata dal gruppo di ricerca in Didattica della Fisica dell’Università di Bologna, in collaborazione con il gruppo di ricerca in Fisica Teorica e con ricercatori del CNR di Bologna. La proposta è stata sperimentata in diverse classi V di Liceo scientifico e dalle sperimentazioni sono emersi casi significativi di studenti che non sono riusciti ad accettare la teoria quantistica come descrizione convincente ad affidabile della realtà fisica (casi di non accettazione), nonostante sembrassero aver capito la maggior parte degli argomenti e essersi ‘appropriati’ del percorso per come gli era stato proposto. Da questa evidenza sono state formulate due domande di ricerca: (1) qual è la natura di questa non accettazione? Rispecchia una presa di posizione epistemologica o è espressione di una mancanza di comprensione profonda? (2) Nel secondo caso, è possibile individuare precisi meccanismi cognitivi che possono ostacolare o facilitare l’accettazione della fisica quantistica? L’analisi di interviste individuali degli studenti ha permesso di mettere in luce tre principali esigenze cognitive (cognitive needs) che sembrano essere coinvolte nell’accettazione e nell’apprendimento della fisica quantistica: le esigenze di visualizzabilità, comparabilità e di ‘realtà’. I ‘cognitive needs’ sono stati quindi utilizzati come strumenti di analisi delle diverse proposte didattiche in letteratura e del percorso di Bologna, al fine di metterne in luce le criticità. Sono state infine avanzate alcune proposte per un suo miglioramento.
Resumo:
This thesis project is framed in the research field of Physics Education and aims to contribute to the reflection on the importance of disciplinary identities in addressing interdisciplinarity through the lens of the Nature of Science (NOS). In particular, the study focuses on the module on the parabola and parabolic motion, which was designed within the EU project IDENTITIES. The project aims to design modules to innovate pre-service teacher education according to contemporary challenges, focusing on interdisciplinarity in curricular and STEM topics (especially between physics, mathematics and computer science). The modules are designed according to a model of disciplines and interdisciplinarity that the project IDENTITIES has been elaborating on two main theoretical frameworks: the Family Resemblance Approach (FRA), reconceptualized for the Nature of science (Erduran & Dagher, 2014), and the boundary crossing and boundary objects framework by Akkerman and Bakker (2011). The main aim of the thesis is to explore the impact of this interdisciplinary model in the specific case of the implementation of the parabola and parabolic motion module in a context of preservice teacher education. To reach this purpose, we have analyzed some data collected during the implementation in order to investigate, in particular, the role of the FRA as a learning tool to: a) elaborate on the concept of “discipline”, within the broader problem to define interdisciplinarity; b) compare the epistemic core of physics and mathematics; c) develop epistemic skills and interdisciplinary competences in student-teachers. The analysis of the data led us to recognize three different roles played by the FRA: FRA as epistemological activator, FRA as scaffolding for reasoning and navigating (inhabiting) the complexity, and FRA as lens to investigate the relationship between physics and mathematics in the historical case.
Resumo:
My thesis falls within the framework of physics education and teaching of mathematics. The objective of this report was made possible by using geometrical (in mathematics) and qualitative (in physics) problems. We have prepared four (resp. three) open answer exercises for mathematics (resp. physics). The test batch has been selected across two different school phases: end of the middle school (third year, 8\textsuperscript{th} grade) and beginning of high school (second and third year, 10\textsuperscript{th} and 11\textsuperscript{th} grades respectively). High school students achieved the best results in almost every problem, but 10\textsuperscript{th} grade students got the best overall results. Moreover, a clear tendency to not even try qualitative problems resolution has emerged from the first collection of graphs, regardless of subject and grade. In order to improve students' problem-solving skills, it is worth to invest on vertical learning and spiral curricula. It would make sense to establish a stronger and clearer connection between physics and mathematical knowledge through an interdisciplinary approach.