5 resultados para Model Testing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The lateral characteristics of tires in terms of lateral forces as a function of sideslip angle is a focal point in the prediction of ground loads and ground handling aircraft behavior. However, tests to validate such coefficients are not mandatory to obtain Aircraft Type Certification and so they are not available for ATR tires. Anyway, some analytical values are implemented in ATR calculation codes (Flight Qualities in-house numerical code and Loads in-house numerical code). Hence, the goal of my work is to further investigate and validate lateral tires characteristics by means of: exploitation and re-parameterization of existing test on NLG tires, implementation of easy-handle model based on DFDR parameters to compute sideslip angles, application of this model to compute lateral loads on existing flight tests and incident cases, analysis of results. The last part of this work is dedicated to the preliminary study of a methodology to perform a test to retrieve lateral tire loads during ground turning with minimum requirements in terms of aircraft test instrumentation. This represents the basis for future works.
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.
Resumo:
The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.
Resumo:
The aim of this novel experimental study is to investigate the behaviour of a 2m x 2m model of a masonry groin vault, which is built by the assembly of blocks made of a 3D-printed plastic skin filled with mortar. The choice of the groin vault is due to the large presence of this vulnerable roofing system in the historical heritage. Experimental tests on the shaking table are carried out to explore the vault response on two support boundary conditions, involving four lateral confinement modes. The data processing of markers displacement has allowed to examine the collapse mechanisms of the vault, based on the arches deformed shapes. There then follows a numerical evaluation, to provide the orders of magnitude of the displacements associated to the previous mechanisms. Given that these displacements are related to the arches shortening and elongation, the last objective is the definition of a critical elongation between two diagonal bricks and consequently of a diagonal portion. This study aims to continue the previous work and to take another step forward in the research of ground motion effects on masonry structures.
Resumo:
Planning is an important sub-field of artificial intelligence (AI) focusing on letting intelligent agents deliberate on the most adequate course of action to attain their goals. Thanks to the recent boost in the number of critical domains and systems which exploit planning for their internal procedures, there is an increasing need for planning systems to become more transparent and trustworthy. Along this line, planning systems are now required to produce not only plans but also explanations about those plans, or the way they were attained. To address this issue, a new research area is emerging in the AI panorama: eXplainable AI (XAI), within which explainable planning (XAIP) is a pivotal sub-field. As a recent domain, XAIP is far from mature. No consensus has been reached in the literature about what explanations are, how they should be computed, and what they should explain in the first place. Furthermore, existing contributions are mostly theoretical, and software implementations are rarely more than preliminary. To overcome such issues, in this thesis we design an explainable planning framework bridging the gap between theoretical contributions from literature and software implementations. More precisely, taking inspiration from the state of the art, we develop a formal model for XAIP, and the software tool enabling its practical exploitation. Accordingly, the contribution of this thesis is four-folded. First, we review the state of the art of XAIP, supplying an outline of its most significant contributions from the literature. We then generalise the aforementioned contributions into a unified model for XAIP, aimed at supporting model-based contrastive explanations. Next, we design and implement an algorithm-agnostic library for XAIP based on our model. Finally, we validate our library from a technological perspective, via an extensive testing suite. Furthermore, we assess its performance and usability through a set of benchmarks and end-to-end examples.