8 resultados para Mobile mapping

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi si espone il Mobile Mapping System, cioè il rilevamento di dati geospaziali utilizzando sensori montati a bordo di appositi veicolo senza l'ausilio di punti di contatto a terra. Si illustrano i diversi dispositivi del sistema installati a bordo, le loro diverse applicazioni e metodologie di rilevamento. Si trattano le varie problematiche sorte e le loro risoluzioni.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viene proposto un porting su piattaforma mobile Android di un sistema SLAM (Simultaneous Localization And Mapping) chiamato SlamDunk. Il porting affronta problematiche di prestazioni e qualità delle ricostruzioni 3D ottenute, proponendo poi la soluzione ritenuta ottimale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il mapping di grandezze fisiche risulta estremamente importante, essendo in grado di fornire un adeguato supporto per la localizzazione e il monitoraggio di parametri ambientali sensibili. Nel caso indoor, in assenza di un sistema di localizzazione di riferimento analogo al GPS per il caso outdoor, sfruttando appieno le potenzialità della sensoristica a bordo degli smartphone, si è fatto progressivamente strada il mapping di grandezze fisiche quali, ad esempio, il segnale Wi-Fi e il campo magnetico terrestre. In questo caso il mapping, senza richiedere alcuna infrastruttura e coadiuvato dall'utilizzo di dispositivi portatili largamente diffusi ad uso quotidiano, rappresenta una soluzione relativamente recente ridefinibile come Mobile Crowd Sensing. Il MCS rappresenta un nuovo paradigma di servizio, volto a sfruttare l'interconnettività tra dispositivi portatili per effettuare misurazioni di caratteristiche ambientali in maniera automatizzata, aggregandole in un sistema cloud usufruibile ad una vasta comunità. Tuttavia , il considerevole flusso di dati generato, la variabilità temporale delle grandezze di interesse e il rumore insito nelle misurazioni costituiscono problematiche fondamentali per l'utilizzo e la gestione delle misurazioni effettuate. Per tali motivi l'attività di tesi ha previsto i seguenti obiettivi: (i) fornire una panoramica delle principali tecniche e tecnologie di localizzazione volta a motivare l'importanza del mapping di grandezze fisiche ambientali; (ii) individuazione di grandezze fisiche appetibili per la creazione di mappe affidabili e realizzabili nei contesti applicativi più disparati, sfruttando risorse già presenti nell'ambiente; (iii) sviluppo di un algoritmo statistico in grado di fornire una stima accurata dell'andamento spaziale della grandezza di interesse attraverso un numero limitato di misurazioni, mantenendo la compatibilità con processi MCS e una bassa complessità computazionale. L’algoritmo sviluppato è stato validato attraverso simulazioni e misurazioni svolte in ambienti reali. In particolare, prove sperimentali sono state effettuate nell’arena Vicon nei laboratori DEI dell’Università di Bologna, sede Cesena, concepita dal gruppo di ricerca Casy.