12 resultados para Mobile and ubiquitous computing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il progresso scientifico e le innovazioni tecnologiche nei campi dell'elettronica, informatica e telecomunicazioni, stanno aprendo la strada a nuove visioni e concetti. L'obiettivo della tesi è quello d'introdurre il modello del Cloud computing per rendere possibile l'attuale visione di Internet of Thing. Nel primo capitolo si introduce Ubiquitous computing come un nuovo modo di vedere i computer, cercando di fare chiarezza sulla sua definizione, la sua nascita e fornendo un breve quadro storico. Nel secondo capitolo viene presentata la visione di Internet of Thing (Internet delle “cose”) che si avvale di concetti e di problematiche in parte già considerate con Ubiquitous computing. Internet of Thing è una visione in cui la rete Internet viene estesa agli oggetti di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati ambientali sono solo alcuni esempi. Per realizzare questo tipo di applicazioni le tecnologie wireless sono da considerare necessarie, sebbene questa visione non assuma nessuna specifica tecnologia di comunicazione. Inoltre, anche schede di sviluppo possono agevolare la prototipazione di tali applicazioni. Nel terzo capitolo si presenta Cloud computing come modello di business per utilizzare su richiesta risorse computazionali. Nel capitolo, vengono inizialmente descritte le caratteristiche principali e i vari tipi di modelli di servizio, poi viene argomentato il ruolo che i servizi di Cloud hanno per Internet of Thing. Questo modello permette di accelerare lo sviluppo e la distribuzione di applicazioni di Internet of Thing, mettendo a disposizione capacità di storage e di calcolo per l'elaborazione distribuita dell'enorme quantità di dati prodotta da sensori e dispositivi vari. Infine, nell'ultimo capitolo viene considerato, come esempio pratico, l'integrazione di tecnologie di Cloud computing in una applicazione IoT. Il caso di studio riguarda il monitoraggio remoto dei parametri vitali, considerando Raspberry Pi e la piattaforma e-Health sviluppata da Cooking Hacks per lo sviluppo di un sistema embedded, e utilizzando PubNub come servizio di Cloud per distribuire i dati ottenuti dai sensori. Il caso di studio metterà in evidenza sia i vantaggi sia le eventuali problematiche che possono scaturire utilizzando servizi di Cloud in applicazioni IoT.
Resumo:
The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.
Resumo:
Negli ultimi anni si è imposto il concetto di Ubiquitous Computing, ovvero la possibilità di accedere al web e di usare applicazioni per divertimento o lavoro in qualsiasi momento e in qualsiasi luogo. Questo fenomeno sta cambiando notevolmente le abitudini delle persone e ciò è testimoniato anche dal fatto che il mercato mobile è in forte ascesa: da fine 2014 sono 45 milioni gli smartphone e 12 milioni i tablet in circolazione in Italia. Sembra quasi impossibile, dunque, rinunciare al mobile, soprattutto per le aziende: il nuovo modo di comunicare ha reso necessaria l’introduzione del Mobile Marketing e per raggiungere i propri clienti ora uno degli strumenti più efficaci e diretti sono le applicazioni. Esse si definiscono native se si pongono come traguardo un determinato smartphone e possono funzionare solo per quel sistema operativo. Infatti un’app costruita, per esempio, per Android non può funzionare su dispositivi Apple o Windows Phone a meno che non si ricorra al processo di porting. Ultimamente però è richiesto un numero sempre maggiore di app per piattaforma e i dispositivi presenti attualmente sul mercato presentano differenze tra le CPU, le interfacce (Application Programming Interface), i sistemi operativi, l’hardware, etc. Nasce quindi la necessità di creare applicazioni che possano funzionare su più sistemi operativi, ovvero le applicazioni platform-independent. Per facilitare e supportare questo genere di lavoro sono stati definiti nuovi ambienti di sviluppo tra i quali Sencha Touch e Apache Cordova. Il risultato finale dello sviluppo di un’app attraverso questi framework è proprio quello di ottenere un oggetto che possa essere eseguito su qualsiasi dispositivo. Naturalmente la resa non sarà la stessa di un’app nativa, la quale ha libero accesso a tutte le funzionalità del dispositivo (rubrica, messaggi, notifiche, geolocalizzazione, fotocamera, accelerometro, etc.), però con questa nuova app vi è la garanzia di un costo di sviluppo minore e di una richiesta considerevole sul mercato. L’obiettivo della tesi è quello di analizzare questo scenario attraverso un caso di studio proveniente da una realtà aziendale che presenta proprio la necessità di sviluppare un’applicazione per più piattaforme. Nella prima parte della tesi viene affrontata la tematica del mobile computing e quella del dualismo tra la programmazione nativa e le web app: verranno analizzate le caratteristiche delle due diverse tipologie cercando di capire quale delle due risulti essere la migliore. Nella seconda parte sarà data luce a uno dei più importanti framework per la costruzione di app multi-piattaforma: Sencha Touch. Ne verranno analizzate le caratteristiche, soffermandosi in particolare sul pattern MVC e si potrà vedere un confronto con altri framework. Nella terza parte si tratterà il caso di studio, un app mobile per Retail basata su Sencha Touch e Apache Cordova. Nella parte finale si troveranno alcune riflessioni e conclusioni sul mobile platform-independent e sui vantaggi e gli svantaggi dell’utilizzo di JavaScript per sviluppare app.
Resumo:
Negli ultimi decenni, le tecnologie e i prodotti informatici sono diventati pervasivi e sono ora una parte essenziale delle nostre vite. Ogni giorno ci influenzano in maniera più o meno esplicita, cambiando il nostro modo di vivere e i nostri comportamenti più o meno intenzionalmente. Tuttavia, i computer non nacquero inizialmente per persuadere: essi furono costruiti per gestire, calcolare, immagazzinare e recuperare dati. Non appena i computer si sono spostati dai laboratori di ricerca alla vita di tutti i giorni, sono però diventati sempre più persuasivi. Questa area di ricerca è chiamata pesuasive technology o captology, anche definita come lo studio dei sistemi informatici interattivi progettati per cambiare le attitudini e le abitudini delle persone. Nonostante il successo crescente delle tecnologie persuasive, sembra esserci una mancanza di framework sia teorici che pratici, che possano aiutare gli sviluppatori di applicazioni mobili a costruire applicazioni in grado di persuadere effettivamente gli utenti finali. Tuttavia, il lavoro condotto dal Professor Helal e dal Professor Lee al Persuasive Laboratory all’interno dell’University of Florida tenta di colmare questa lacuna. Infatti, hanno proposto un modello di persuasione semplice ma efficace, il quale può essere usato in maniera intuitiva da ingegneri o specialisti informatici. Inoltre, il Professor Helal e il Professor Lee hanno anche sviluppato Cicero, un middleware per dispositivi Android basato sul loro precedente modello, il quale può essere usato in modo molto semplice e veloce dagli sviluppatori per creare applicazioni persuasive. Il mio lavoro al centro di questa tesi progettuale si concentra sull’analisi del middleware appena descritto e, successivamente, sui miglioramenti e ampliamenti portati ad esso. I più importanti sono una nuova architettura di sensing, una nuova struttura basata sul cloud e un nuovo protocollo che permette di creare applicazioni specifiche per smartwatch.
Resumo:
Multifunctional Structures (MFS) represent one of the most promising disruptive technologies in the space industry. The possibility to merge spacecraft primary and secondary structures as well as attitude control, power management and onboard computing functions is expected to allow for mass, volume and integration effort savings. Additionally, this will bring the modular construction of spacecraft to a whole new level, by making the development and integration of spacecraft modules, or building blocks, leaner, reducing lead times from commissioning to launch from the current 3-6 years down to the order of 10 months, as foreseen by the latest Operationally Responsive Space (ORS) initiatives. Several basic functionalities have been integrated and tested in specimens of various natures over the last two decades. However, a more integrated, system-level approach was yet to be developed. The activity reported in this thesis was focused on the system-level approach to multifunctional structures for spacecraft, namely in the context of nano- and micro-satellites. This thesis documents the work undertaken in the context of the MFS program promoted by the European Space Agency under the Technology Readiness Program (TRP): a feasibility study, including specimens manufacturing and testing. The work sequence covered a state of the art review, with particular attention to traditional modular architectures implemented in ALMASat-1 and ALMASat-EO satellites, and requirements definition, followed by the development of a modular multi-purpose nano-spacecraft concept, and finally by the design, integration and testing of integrated MFS specimens. The approach for the integration of several critical functionalities into nano-spacecraft modules was validated and the overall performance of the system was verified through relevant functional and environmental testing at University of Bologna and University of Southampton laboratories.
Resumo:
Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.
Resumo:
Il proliferare di dispositivi di elaborazione e comunicazione mobili (telefoni cellulari, computer portatili, PDA, wearable devices, personal digital assistant) sta guidando un cambiamento rivoluzionario nella nostra società dell'informazione. Si sta migrando dall'era dei Personal Computer all'era dell'Ubiquitous Computing, in cui un utente utilizza, parallelamente, svariati dispositivi elettronici attraverso cui può accedere a tutte le informazioni, ovunque e quantunque queste gli si rivelino necessarie. In questo scenario, anche le mappe digitali stanno diventando sempre più parte delle nostre attività quotidiane; esse trasmettono informazioni vitali per una pletora di applicazioni che acquistano maggior valore grazie alla localizzazione, come Yelp, Flickr, Facebook, Google Maps o semplicemente le ricerche web geo-localizzate. Gli utenti di PDA e Smartphone dipendono sempre più dai GPS e dai Location Based Services (LBS) per la navigazione, sia automobilistica che a piedi. Gli stessi servizi di mappe stanno inoltre evolvendo la loro natura da uni-direzionale a bi-direzionale; la topologia stradale è arricchita da informazioni dinamiche, come traffico in tempo reale e contenuti creati dagli utenti. Le mappe digitali aggiornabili dinamicamente sono sul punto di diventare un saldo trampolino di lancio per i sistemi mobili ad alta dinamicità ed interattività, che poggiando su poche informazioni fornite dagli utenti, porteranno una moltitudine di applicazioni innovative ad un'enorme base di consumatori. I futuri sistemi di navigazione per esempio, potranno utilizzare informazioni estese su semafori, presenza di stop ed informazioni sul traffico per effettuare una ottimizzazione del percorso che valuti simultaneamente fattori come l'impronta al carbonio rilasciata, il tempo di viaggio effettivamente necessario e l'impatto della scelta sul traffico locale. In questo progetto si mostra come i dati GPS raccolti da dispositivi fissi e mobili possano essere usati per estendere le mappe digitali con la locazione dei segnali di stop, dei semafori e delle relative temporizzazioni. Queste informazioni sono infatti oggi rare e locali ad ogni singola municipalità, il che ne rende praticamente impossibile il pieno reperimento. Si presenta quindi un algoritmo che estrae utili informazioni topologiche da agglomerati di tracciati gps, mostrando inoltre che anche un esiguo numero di veicoli equipaggiati con la strumentazione necessaria sono sufficienti per abilitare l'estensione delle mappe digitali con nuovi attributi. Infine, si mostrerà come l'algoritmo sia in grado di lavorare anche con dati mancanti, ottenendo ottimi risultati e mostrandosi flessibile ed adatto all'integrazione in sistemi reali.
Resumo:
"I computer del nuovo millennio saranno sempre più invisibili, o meglio embedded, incorporati agli oggetti, ai mobili, anche al nostro corpo. L'intelligenza elettronica sviluppata su silicio diventerà sempre più diffusa e ubiqua. Sarà come un'orchestra di oggetti interattivi, non invasivi e dalla presenza discreta, ovunque". [Mark Weiser, 1991] La visione dell'ubiquitous computing, prevista da Weiser, è ormai molto vicina alla realtà e anticipa una rivoluzione tecnologica nella quale l'elaborazione di dati ha assunto un ruolo sempre più dominante nella nostra vita quotidiana. La rivoluzione porta non solo a vedere l'elaborazione di dati come un'operazione che si può compiere attraverso un computer desktop, legato quindi ad una postazione fissa, ma soprattutto a considerare l'uso della tecnologia come qualcosa di necessario in ogni occasione, in ogni luogo e la diffusione della miniaturizzazione dei dispositivi elettronici e delle tecnologie di comunicazione wireless ha contribuito notevolmente alla realizzazione di questo scenario. La possibilità di avere a disposizione nei luoghi più impensabili sistemi elettronici di piccole dimensioni e autoalimentati ha contribuito allo sviluppo di nuove applicazioni, tra le quali troviamo le WSN (Wireless Sensor Network), ovvero reti formate da dispositivi in grado di monitorare qualsiasi grandezza naturale misurabile e inviare i dati verso sistemi in grado di elaborare e immagazzinare le informazioni raccolte. La novità introdotta dalle reti WSN è rappresentata dalla possibilità di effettuare monitoraggi con continuità delle più diverse grandezze fisiche, il che ha consentito a questa nuova tecnologia l'accesso ad un mercato che prevede una vastità di scenari indefinita. Osservazioni estese sia nello spazio che nel tempo possono essere inoltre utili per poter ricavare informazioni sull'andamento di fenomeni naturali che, se monitorati saltuariamente, non fornirebbero alcuna informazione interessante. Tra i casi d'interesse più rilevanti si possono evidenziare: - segnalazione di emergenze (terremoti, inondazioni) - monitoraggio di parametri difficilmente accessibili all'uomo (frane, ghiacciai) - smart cities (analisi e controllo di illuminazione pubblica, traffico, inquinamento, contatori gas e luce) - monitoraggio di parametri utili al miglioramento di attività produttive (agricoltura intelligente, monitoraggio consumi) - sorveglianza (controllo accessi ad aree riservate, rilevamento della presenza dell'uomo) Il vantaggio rappresentato da un basso consumo energetico, e di conseguenza un tempo di vita della rete elevato, ha come controparte il non elevato range di copertura wireless, valutato nell'ordine delle decine di metri secondo lo standard IEEE 802.15.4. Il monitoraggio di un'area di grandi dimensioni richiede quindi la disposizione di nodi intermedi aventi le funzioni di un router, il cui compito sarà quello di inoltrare i dati ricevuti verso il coordinatore della rete. Il tempo di vita dei nodi intermedi è di notevole importanza perché, in caso di spegnimento, parte delle informazioni raccolte non raggiungerebbero il coordinatore e quindi non verrebbero immagazzinate e analizzate dall'uomo o dai sistemi di controllo. Lo scopo di questa trattazione è la creazione di un protocollo di comunicazione che preveda meccanismi di routing orientati alla ricerca del massimo tempo di vita della rete. Nel capitolo 1 vengono introdotte le WSN descrivendo caratteristiche generali, applicazioni, struttura della rete e architettura hardware richiesta. Nel capitolo 2 viene illustrato l'ambiente di sviluppo del progetto, analizzando le piattaforme hardware, firmware e software sulle quali ci appoggeremo per realizzare il progetto. Verranno descritti anche alcuni strumenti utili per effettuare la programmazione e il debug della rete. Nel capitolo 3 si descrivono i requisiti di progetto e si realizza una mappatura dell'architettura finale. Nel capitolo 4 si sviluppa il protocollo di routing, analizzando i consumi e motivando le scelte progettuali. Nel capitolo 5 vengono presentate le interfacce grafiche utilizzate utili per l'analisi dei dati. Nel capitolo 6 vengono esposti i risultati sperimentali dell'implementazione fissando come obiettivo il massimo lifetime della rete.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
In the last 10 years the number of mobile devices has grown rapidly. Each person usually brings at least two personal devices and researchers says that in a near future this number could raise up to ten devices per person. Moreover, all the devices are becoming more integrated to our life than in the past, therefore the amount of data exchanged increases accordingly to the improvement of people's lifestyle. This is what researchers call Internet of Things. Thus, in the future there will be more than 60 billions of nodes and the current infrastructure is not ready to keep track of all the exchanges of data between them. Therefore, infrastructure improvements have been proposed in the last years, like MobileIP and HIP in order to facilitate the exchange of packets in mobility, however none of them have been optimized for the purpose. In the last years, researchers from Mid Sweden University created The MediaSense Framework. Initially, this framework was based on the Chord protocol in order to route packets in a big network, but the most important change has been the introduction of PGrids in order to create the Overlay and the persistence. Thanks to this technology, a lookup in the trie takes up to 0.5*log(N), where N is the total number of nodes in the network. This result could be improved by further optimizations on the management of the nodes, for example by the dynamic creation of groups of nodes. Moreover, since the nodes move, an underlaying support for connectivity management is needed. SCTP has been selected as one of the most promising upcoming standards for simultaneous multiple connection's management.
Resumo:
L’obiettivo del progetto di tesi svolto è quello di realizzare un servizio di livello middleware dedicato ai dispositivi mobili che sia in grado di fornire il supporto per l’offloading di codice verso una infrastruttura cloud. In particolare il progetto si concentra sulla migrazione di codice verso macchine virtuali dedicate al singolo utente. Il sistema operativo delle VMs è lo stesso utilizzato dal device mobile. Come i precedenti lavori sul computation offloading, il progetto di tesi deve garantire migliori performance in termini di tempo di esecuzione e utilizzo della batteria del dispositivo. In particolare l’obiettivo più ampio è quello di adattare il principio di computation offloading a un contesto di sistemi distribuiti mobili, migliorando non solo le performance del singolo device, ma l’esecuzione stessa dell’applicazione distribuita. Questo viene fatto tramite una gestione dinamica delle decisioni di offloading basata, non solo, sullo stato del device, ma anche sulla volontà e/o sullo stato degli altri utenti appartenenti allo stesso gruppo. Per esempio, un primo utente potrebbe influenzare le decisioni degli altri membri del gruppo specificando una determinata richiesta, come alta qualità delle informazioni, risposta rapida o basata su altre informazioni di alto livello. Il sistema fornisce ai programmatori un semplice strumento di definizione per poter creare nuove policy personalizzate e, quindi, specificare nuove regole di offloading. Per rendere il progetto accessibile ad un più ampio numero di sviluppatori gli strumenti forniti sono semplici e non richiedono specifiche conoscenze sulla tecnologia. Il sistema è stato poi testato per verificare le sue performance in termini di mecchanismi di offloading semplici. Successivamente, esso è stato anche sottoposto a dei test per verificare che la selezione di differenti policy, definite dal programmatore, portasse realmente a una ottimizzazione del parametro designato.