6 resultados para Mobile Robots Dynamic and Kinematic Modelling and Simulation
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’azoto è uno dei prodotti principali dell’industria chimica, utilizzato principalmente per assicurare un sicuro stoccaggio di composti infiammabili. Generatori con sistemi PSA sono spesso più economici della tradizionale distillazione criogenica. I processi PSA utilizzano una colonna a letto fisso, riempita con materiale adsorbente, che adsorbe selettivamente un componente da una miscela gassosa. L’ossigeno diffonde molto più velocemente dell'azoto nei pori di setacci molecolari carboniosi. Oltre ad un ottimo materiale adsorbente, anche il design è fondamentale per la performance di un processo PSA. La fase di adsorbimento è seguita da una fase di desorbimento. Il materiale adsorbente può essere quindi riutilizzato nel ciclo seguente. L’assenza di un simulatore di processo ha reso necessario l’uso di dati sperimentali per sviluppare nuovi processi. Un tale approccio è molto costoso e lungo. Una modellazione e simulazione matematica, che consideri tutti i fenomeni di trasporto, è richiesta per una migliore comprensione dell'adsorbente sia per l'ottimizzazione del processo. La dinamica della colonna richiede la soluzione di insiemi di PDE distribuite nel tempo e nello spazio. Questo lavoro è stato svolto presso l'Università di Scienze Applicate - Münster, Germania. Argomento di questa tesi è la modellazione e simulazione di un impianto PSA per la produzione di azoto con il simulatore di processo Aspen Adsorption con l’obiettivo di permettere in futuro ottimizzazioni di processo affidabili, attendibili ed economiche basate su computazioni numeriche. E' discussa l’ottimizzazione di parametri, dati cinetici, termodinamici e di equilibrio. Il modello è affidabile, rigoroso e risponde adeguatamente a diverse condizioni al contorno. Tuttavia non è ancora pienamente soddisfacente poiché manca una rappresentazione adeguata della cinetica ovvero dei fenomeni di trasporto di materia. La messa a punto del software permetterà in futuro di indagare velocemente nuove possibilità di operazione.
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.
Resumo:
Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments.
Resumo:
From the discoveries of Pasteur, stereochemistry has played an increasingly important role in the chemical sciences. In particular conformational study of molecules with axial chirality is object of intense research. Through Dynamic-NMR analysis and simulation of the spectra, the energy rotational barriers value of conformers are obtained. When this barrier is high sufficiently, atropisomeric stable compounds can be reached. They can be separated and used in stereo-synthesis and in packing processes. 3,4-bis-aryl maleimides, in which the aromatic groups are sufficiently bulky, generate atropisomeric stable configurations, that can be isolated at room temperature. The assignment of absolute configurations is performed through ECD analysis and comparison with computational calculations. The biological activities of maleimide derivatives widen the field of atropisomers application also in biological systems.