3 resultados para Mixed complementarity problem

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate at which petroleum based plastics are being produced, used and thrown away is increasing every year because of an increase in the global population. Polyhydroxyalkanoates can represent a valid alternative to petroleum based plastics. They are biodegradable polymers that can be produced by some microorganisms as intracellular reserves. The actual problem is represented by the production cost of these bioplastics, which is still not competitive if compared to the one of petroleum based plastics. Mixed microbial cultures can be fed with substrates obtained from the acidogenic fermentation of carbon rich wastes, such as cheese whey, municipal effluents and various kinds of food wastes, that have a low or sometimes even inexisting cost and in this way wastes can be valorized instead of being discharged. The process consists of three phases: acidogenic fermentation in which the substrate is obtained, culture selection in which a PHA-storing culture is selected and enriched eliminating organisms that do not show this property and accumulation, in which the culture is fed until reaching the maximum storage capacity. In this work the possibility to make the process cheaper was explored trying to couple the selection and accumulation steps and a halotolerant culture collected from seawater was used and fed with an artificially salted synthetic substrated made of an aqueous solution containing a mixture of volatile fatty acids in order to explore also if its performance can allow to use it to treat substrates derived from saline effluents, as these streams cannot be treated properly by bacterias found in activated sludge plants due to inhibition caused by high salt concentrations. Generating and selling the produced PHAs obtained from these bacterias it could be possible to lower, nullify or even overcome the costs associated to the new section of a treating plant dedicated to saline effluents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.