6 resultados para Mitochondrial DNA mtDNA

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study focused on the role of oceanographic discontinuities and the presence of transitional areas in shaping the population structure and the phylogeography of the Raja miraletus species complex, coupled with the test of the effective occurrence of past speciation events. The comparisons between the Atlantic African and the North-Eastern Atlantic-Mediterranean geographic populations were unravelled using both Cytochrome Oxidase I and eight microsatellite loci. This approach guaranteed a robust dataset for the identification of a speciation event between the Atlantic African clade, corresponding to the ex Raja ocellifera nominal species, and the NE Atlantic-Mediterranean R. miraletus clade. As a matter of fact, the origin of the Atlantic Africa and the NE Atlantic-Mediterranean deep split dated about 11.74MYA and was likely due to the synergic influence currents and two upwelling areas crossing the Western African Waters. Within the Mediterranean Sea, particular attention was also paid to the transitional area represented by Adventura and Maltese Bank, that might have contributed in sustaining the connectivity of the Western and the Eastern Mediterranean geographical populations. Furthermore, the geology of the easternmost part of Sicily and the geo-morphological depression of the Calabrian Arc could have driven the differentiation of the Eastern Mediterranean Sea. Although bathymetric and oceanographic discontinuity could represent barriers to dispersal and migration between Eastern and Western Mediterranean samples, a clear and complete genetic separation among them was not detected. Results produced by this work identified a speciation event defining Raja ocellifera and R. miraletus as two different species, and describing the R. miraletus species complex as the most ancient cryptic speciation event in the family Rajidae, representing another example of how strictly connected the environment, the behavioural habits and the evolutionary and ecologic drivers are.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elasmobranchs are an important by-catch of commercial fisheries targeting bony fishes. Fisheries targeting sharks are rare, but usually almost all specimen bycatched are marketed. They risk extinction if current fishing pressure continues (Ferretti et al., 2008). Accurate species identification is critical for the design of sustainable fisheries and appropriate management plans, especially since not all species are equally sensitive to fishing pressure (Walker & Hislop 1998). The identification of species constitutes the first basic step for biodiversity monitoring and conservation (Dayrat B et al., 2005). More recently, mtDNA sequencing has also been used for species identification and its use has become widespread under the DNA Barcode initiative (e.g. Hebert et al. 2003a, 2003b; Ward et al. 2005, 2008a; Moura et al 2008; Steinke et al. 2009). The aims of this work were: 1) identify sharks and skates species using DNA barcode; 2) compare species of different provenance; 3) use DNA barcode for misidentified species. Using DNA barcode 15 species of sharks (Alopias vulpinus, Centrophorus granulosus, Cetorhinus maximus, Dalatias licha, Etmopterus spinax, Galeorhinus galeus, Galeus melastomus, Heptranchias perlo, Hexanchus griseus, Mustelus mustelus, Mustelus punctulatus, Oxynotus centrina, Scyliorhinus canicula Squalus acanthias, Squalus blainville), 1 species of chimaera (Chimaera monstrosa) and 21 species of rays/skayes (Dasyatis centroura, Dasyatis pastinaca, Dasyatis sp., Dipturus nidarosiensis, Dipturus oxyrinchus, Leucoraja circularis, Leucoraja melitensis, Myliobatis aquila, Pteromylaeus bovinus, Pteroplatytrygon violacea, Raja asterias, Raja brachyura, Raja clavata, Raja miraletus, Raja montagui, Raja radula, Raja polystigma, Raja undulata, Rostroraja alba, Torpedo marmorata, Torpedo nobiliana, Torpedo torpedo) was identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the discovery that DNA can be successfully recovered from museum collections, a new source of genetic information has been provided to extend our comprehension of the evolutionary history of species. However, historical specimens are often mislabeled or report incorrect information of origin, thus accurate identification of specimens is essential. Due to the highly damaged nature of ancient DNA many pitfalls exist and particular precautions need to be considered in order to perform genetic analysis. In this study we analyze 208 historical remains of pelagic fishes collected in the beginning of the 20th century. Through the adaptation of existing protocols, usually applied to human remains, we manage to successfully retrieve valuable genetic material from almost all of the examined samples using a guanidine and silica column-based approach. The combined use of two mitochondrial markers cytochrome-oxidase-1(mtDNA COI) and Control Region (mtDNA CR), and the nuclear marker first internal transcriber space (ITS1) allowed us to identify the majority of the examined specimens using traditional PCR and Sanger sequencing techniques. The creation of primers capable of amplifying heavily degraded DNA have great potential for future uses, both in ancient and in modern investigation. The methodologies developed in this study can in fact be applied for other ancient fish specimens as well as cooked or canned samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.