7 resultados para Minimization Problem, Lattice Model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work we study a model for the breast image reconstruction in Digital Tomosynthesis, that is a non-invasive and non-destructive method for the three-dimensional visualization of the inner structures of an object, in which the data acquisition includes measuring a limited number of low-dose two-dimensional projections of an object by moving a detector and an X-ray tube around the object within a limited angular range. The problem of reconstructing 3D images from the projections provided in the Digital Tomosynthesis is an ill-posed inverse problem, that leads to a minimization problem with an object function that contains a data fitting term and a regularization term. The contribution of this thesis is to use the techniques of the compressed sensing, in particular replacing the standard least squares problem of data fitting with the problem of minimizing the 1-norm of the residuals, and using as regularization term the Total Variation (TV). We tested two different algorithms: a new alternating minimization algorithm (ADM), and a version of the more standard scaled projected gradient algorithm (SGP) that involves the 1-norm. We perform some experiments and analyse the performance of the two methods comparing relative errors, iterations number, times and the qualities of the reconstructed images. In conclusion we noticed that the use of the 1-norm and the Total Variation are valid tools in the formulation of the minimization problem for the image reconstruction resulting from Digital Tomosynthesis and the new algorithm ADM has reached a relative error comparable to a version of the classic algorithm SGP and proved best in speed and in the early appearance of the structures representing the masses.
Resumo:
In this work we focus on pattern recognition methods related to EMG upper-limb prosthetic control. After giving a detailed review of the most widely used classification methods, we propose a new classification approach. It comes as a result of comparison in the Fourier analysis between able-bodied and trans-radial amputee subjects. We thus suggest a different classification method which considers each surface electrodes contribute separately, together with five time domain features, obtaining an average classification accuracy equals to 75% on a sample of trans-radial amputees. We propose an automatic feature selection procedure as a minimization problem in order to improve the method and its robustness.
Resumo:
This thesis is focused on the viscoelastic behavior of macro-synthetic fiber-reinforced concrete (MSFRC) with polypropylene studied numerically when subjected to temperature variations (-30 oC to +60 oC). LDPM (lattice discrete particle model), a meso-scale model for heterogeneous composites, is used. To reproduce the MSFRC structural behavior, an extended version of LDPM that includes fiber effects through fiber-concrete interface micromechanics, called LDPM-F, is applied. Model calibration is performed based on three-point bending, cube, and cylinder test for plain concrete and MSFRC. This is followed by a comprehensive literature study on the variation of mechanical properties with temperature for individual fibers and plain concrete. This literature study and past experimental test results constitute inputs for final numerical simulations. The numerical response of MSFRC three-point bending test is replicated and compared with the previously conducted experimental test results; finally, the conclusions were drawn. LDPM numerical model is successfully calibrated using experimental responses on plain concrete. Fiber-concrete interface micro-mechanical parameters are subsequently fixed and LDPM-F models are calibrated based on MSFRC three-point bending test at room temperature. Number of fibers contributing crack bridging mechanism is computed and found to be in good agreement with experimental counts. Temperature variations model for individual constituents of MSFRC, fibers and plain concrete, are implemented in LDPM-F. The model is validated for MSFRC three-point bending stress-CMOD (crack mouth opening) response reproduced at -30 oC, -15 oC, 0 oC, +20 oC, +40 oC and +60 oC. It is found that the model can well describe the temperature variation behavior of MSFRC. At positive temperatures, simulated responses are in good agreement. Slight disagreement in negative regimes suggests an in-depth study on fiber-matrix interface bond behavior with varying temperatures.
Resumo:
In the industry of steelmaking, the process of galvanizing is a treatment which is applied to protect the steel from corrosion. The air knife effect (AKE) occurs when nozzles emit a steam of air on the surfaces of a steel strip to remove excess zinc from it. In our work we formalized the problem to control the AKE and we implemented, with the R&D dept.of MarcegagliaSPA, a DL model able to drive the AKE. We call it controller. It takes as input the tuple (pres and dist) to drive the mechanical nozzles towards the (c). According to the requirements we designed the structure of the network. We collected and explored the data set of the historical data of the smart factory. Finally, we designed the loss function as sum of three components: the minimization between the coating addressed by the network and the target value we want to reach; and two weighted minimization components for both pressure and distance. In our solution we construct a second module, named coating net, to predict the coating of zinc
Resumo:
Il lavoro è dedicato all'analisi fisica e alla modellizzazione dello strato limite atmosferico in condizioni stabili. L'obiettivo principale è quello di migliorare i modelli di parametrizzazione della turbulenza attualmente utilizzati dai modelli meteorologici a grande scala. Questi modelli di parametrizzazione della turbolenza consistono nell' esprimere gli stress di Reynolds come funzioni dei campi medi (componenti orizzontali della velocità e temperatura potenziale) usando delle chiusure. La maggior parte delle chiusure sono state sviluppate per i casi quasi-neutrali, e la difficoltà è trattare l'effetto della stabilità in modo rigoroso. Studieremo in dettaglio due differenti modelli di chiusura della turbolenza per lo strato limite stabile basati su assunzioni diverse: uno schema TKE-l (Mellor-Yamada,1982), che è usato nel modello di previsione BOLAM (Bologna Limited Area Model), e uno schema sviluppato recentemente da Mauritsen et al. (2007). Le assunzioni delle chiusure dei due schemi sono analizzate con dati sperimentali provenienti dalla torre di Cabauw in Olanda e dal sito CIBA in Spagna. Questi schemi di parametrizzazione della turbolenza sono quindi inseriti all'interno di un modello colonnare dello strato limite atmosferico, per testare le loro predizioni senza influenze esterne. Il confronto tra i differenti schemi è effettuato su un caso ben documentato in letteratura, il "GABLS1". Per confermare la validità delle predizioni, un dataset tridimensionale è creato simulando lo stesso caso GABLS1 con una Large Eddy Simulation. ARPS (Advanced Regional Prediction System) è stato usato per questo scopo. La stratificazione stabile vincola il passo di griglia, poichè la LES deve essere ad una risoluzione abbastanza elevata affinchè le tipiche scale verticali di moto siano correttamente risolte. Il confronto di questo dataset tridimensionale con le predizioni degli schemi turbolenti permettono di proporre un insieme di nuove chiusure atte a migliorare il modello di turbolenza di BOLAM. Il lavoro è stato compiuto all' ISAC-CNR di Bologna e al LEGI di Grenoble.
Resumo:
The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.
Resumo:
In this work we study a polyenergetic and multimaterial model for the breast image reconstruction in Digital Tomosynthesis, taking into consideration the variety of the materials forming the object and the polyenergetic nature of the X-rays beam. The modelling of the problem leads to the resolution of a high-dimensional nonlinear least-squares problem that, due to its nature of inverse ill-posed problem, needs some kind of regularization. We test two main classes of methods: the Levenberg-Marquardt method (together with the Conjugate Gradient method for the computation of the descent direction) and two limited-memory BFGS-like methods (L-BFGS). We perform some experiments for different values of the regularization parameter (constant or varying at each iteration), tolerances and stop conditions. Finally, we analyse the performance of the several methods comparing relative errors, iterations number, times and the qualities of the reconstructed images.