2 resultados para Minimal path convexity

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.