2 resultados para Microwaves
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The problem of localizing a scatterer, which represents a tumor, in a homogeneous circular domain, which represents a breast, is addressed. A breast imaging method based on microwaves is considered. The microwave imaging involves to several techniques for detecting, localizing and characterizing tumors in breast tissues. In all such methods an electromagnetic inverse scattering problem exists. For the scattering detection method, an algorithm based on a linear procedure solution, inspired by MUltiple SIgnal Classification algorithm (MUSIC) and Time Reversal method (TR), is implemented. The algorithm returns a reconstructed image of the investigation domain in which it is detected the scatterer position. This image is called pseudospectrum. A preliminary performance analysis of the algorithm vying the working frequency is performed: the resolution and the signal-to-noise ratio of the pseudospectra are improved if a multi-frequency approach is considered. The Geometrical Mean-MUSIC algorithm (GM- MUSIC) is proposed as multi-frequency method. The performance of the GMMUSIC is tested in different real life computer simulations. The performed analysis shows that the algorithm detects the scatterer until the electrical parameters of the breast are known. This is an evident limit, since, in a real life situation, the anatomy of the breast is unknown. An improvement in GM-MUSIC is proposed: the Eye-GMMUSIC algorithm. Eye-GMMUSIC algorithm needs no a priori information on the electrical parameters of the breast. It is an optimizing algorithm based on the pattern search algorithm: it searches the breast parameters which minimize the Signal-to-Clutter Mean Ratio (SCMR) in the signal. Finally, the GM-MUSIC and the Eye-GMMUSIC algorithms are tested on a microwave breast cancer detection system consisting of an dipole antenna, a Vector Network Analyzer and a novel breast phantom built at University of Bologna. The reconstruction of the experimental data confirm the GM-MUSIC ability to localize a scatterer in a homogeneous medium.
Resumo:
This thesis is aimed to assess similarities and mismatches between the outputs from two independent methods for the cloud cover quantification and classification based on quite different physical basis. One of them is the SAFNWC software package designed to process radiance data acquired by the SEVIRI sensor in the VIS/IR. The other is the MWCC algorithm, which uses the brightness temperatures acquired by the AMSU-B and MHS sensors in their channels centered in the MW water vapour absorption band. At a first stage their cloud detection capability has been tested, by comparing the Cloud Masks they produced. These showed a good agreement between two methods, although some critical situations stand out. The MWCC, in effect, fails to reveal clouds which according to SAFNWC are fractional, cirrus, very low and high opaque clouds. In the second stage of the inter-comparison the pixels classified as cloudy according to both softwares have been. The overall observed tendency of the MWCC method, is an overestimation of the lower cloud classes. Viceversa, the more the cloud top height grows up, the more the MWCC not reveal a certain cloud portion, rather detected by means of the SAFNWC tool. This is what also emerges from a series of tests carried out by using the cloud top height information in order to evaluate the height ranges in which each MWCC category is defined. Therefore, although the involved methods intend to provide the same kind of information, in reality they return quite different details on the same atmospheric column. The SAFNWC retrieval being very sensitive to the top temperature of a cloud, brings the actual level reached by this. The MWCC, by exploiting the capability of the microwaves, is able to give an information about the levels that are located more deeply within the atmospheric column.