2 resultados para Microsatellites (Genetics)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional Structures (MFS) represent one of the most promising disruptive technologies in the space industry. The possibility to merge spacecraft primary and secondary structures as well as attitude control, power management and onboard computing functions is expected to allow for mass, volume and integration effort savings. Additionally, this will bring the modular construction of spacecraft to a whole new level, by making the development and integration of spacecraft modules, or building blocks, leaner, reducing lead times from commissioning to launch from the current 3-6 years down to the order of 10 months, as foreseen by the latest Operationally Responsive Space (ORS) initiatives. Several basic functionalities have been integrated and tested in specimens of various natures over the last two decades. However, a more integrated, system-level approach was yet to be developed. The activity reported in this thesis was focused on the system-level approach to multifunctional structures for spacecraft, namely in the context of nano- and micro-satellites. This thesis documents the work undertaken in the context of the MFS program promoted by the European Space Agency under the Technology Readiness Program (TRP): a feasibility study, including specimens manufacturing and testing. The work sequence covered a state of the art review, with particular attention to traditional modular architectures implemented in ALMASat-1 and ALMASat-EO satellites, and requirements definition, followed by the development of a modular multi-purpose nano-spacecraft concept, and finally by the design, integration and testing of integrated MFS specimens. The approach for the integration of several critical functionalities into nano-spacecraft modules was validated and the overall performance of the system was verified through relevant functional and environmental testing at University of Bologna and University of Southampton laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yellowfin tuna (Thunnus albacares, YFT, Bonnaterre 1788) is one of the most important market tuna species in the world. The high mortality of juveniles is in part caused by their bycatch. Indeed, if unregulated, it could permanently destabilize stocks health. For this reason investigating and better knowing the stock boundaries represent a crucial concern. Aim of this thesis was to preliminary investigate the YFT population structure within and between Atlantic and Pacific Oceans through the analysis of genetic variation at eight microsatellite loci and assess the occurrence of barriers to the gene flow between Oceans. For this propouse we collected 4 geographical samples coming from Atlantic and Pacific Ocean and selected a panel of 8 microsatellites loci developped by Antoni et al., (2014). Samples 71-2-Y and 77-2-Y, came from rispectively west central pacific ocean (WCPO) and east central pacific ocean (ECPO), instead samples 41-1-Y and 34-2-Y derive from west central atlantic ocean (WCAO) and east central atlantic ocean (ECAO). Total 160 specimens were analyzed (40 per sample) and were carried out several genetic information as allele frequencies, allele number, allelic richness, HWE (using He and Ho) and pairwise Fst genetic distance. Results obtained, may support the panmictic theory of this species, only one of pairwise Fst obtained is statistically significant (Fst= 0.00927; pV= 0.00218) between 41-1-Y and 71-2-Y samples. Results suggest low genetic differentiation and consequent high level of gene flow between Atlantic and Pacific populations. Furthermore, we performed an analysis of molecular taxonomy through the use of ATCO (the flaking region between ATPse6 and cytochrome oxidase subunit III genes mt DNA, to discriminate within the gener Thunnus two of the related species (Yellofin and bigeye tuna) according with their difficult recognition at certain size (<40 cm). ATCO analysis in this thesis, has provided strong discriminate evidence between the target species proving to be one of the most reliable genetic tools capable to indagate within the genus Thunnus. Thus, our study has provided useful information for possible use of this protocol for conservation plans and management of this fish stocks.