2 resultados para Micro Product Development
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In recent years, there has been increasing attention to lighting energy efficiency, due to economics - lower energy costs - and environmental reasons - maninduced climate change. Driven by strict energy-efficiency requirements, the lighting industry started to replace the traditional lamps with LED lighting solutions, ignoring the limits of their maintenance and recycling. Faced with an increasing global population, rising resource consumption and associated negative environmental impacts, shifting from a traditional economic linear model to a more sustainable paradigm of growth is now becoming increasingly urgent. Whereas the topic of circular economy has been widely investigated in literature in the past, little attention has been reserved for the different evaluation tools to assess and improve product circularity and how companies can become more resource-efficient. Hence, the present thesis investigates the implementation of a circular economy in the lighting industry through the use of circularity indicators and ecodesign strategies. Concerning the real luminaire products, the role of the luminaire in the circular economy and recycling industry is explored, highlighting the limits of their End-of-life process. The main conclusions of the thesis reveal the significance of initial product development, reuse, remanufacturing and repair strategies in a transition towards a circular economy.
Resumo:
Nowadays, product development in all its phases plays a fundamental role in the industrial chain. The need for a company to compete at high levels, the need to be quick in responding to market demands and therefore to be able to engineer the product quickly and with a high level of quality, has led to the need to get involved in new more advanced methods/ processes. In recent years, we are moving away from the concept of 2D-based design and production and approaching the concept of Model Based Definition. By using this approach, increasingly complex systems turn out to be easier to deal with but above all cheaper in obtaining them. Thanks to the Model Based Definition it is possible to share data in a lean and simple way to the entire engineering and production chain of the product. The great advantage of this approach is precisely the uniqueness of the information. In this specific thesis work, this approach has been exploited in the context of tolerances with the aid of CAD / CAT software. Tolerance analysis or dimensional variation analysis is a way to understand how sources of variation in part size and assembly constraints propagate between parts and assemblies and how that range affects the ability of a project to meet its requirements. It is critically important to note how tolerance directly affects the cost and performance of products. Worst Case Analysis (WCA) and Statistical analysis (RSS) are the two principal methods in DVA. The thesis aims to show the advantages of using statistical dimensional analysis by creating and examining various case studies, using PTC CREO software for CAD modeling and CETOL 6σ for tolerance analysis. Moreover, it will be provided a comparison between manual and 3D analysis, focusing the attention to the information lost in the 1D case. The results obtained allow us to highlight the need to use this approach from the early stages of the product design cycle.