2 resultados para Mg 2FeH 6 synthesis

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative dehydrogenation (ODH) of n-butane is a promising way to synthetize butenes and 1,3-butadiene, currently produced by steam cracking or direct dehydrogenation of n-butane. The addition of oxygen as a reagent leads to the formation of water, a very stable by-product, which makes the process exothermic.In this work, the ODH of n- butane was investigate to selectively obtain butenes and 1,3-butadiene. Four catalysts based on metal oxides (V2O5, La2O3, CeO2 and TiO2) were mixed with Mg metallic powder and reduced at 650 °C for 5 h in 5% H2/Ar atmosphere, with the purpose of creating oxygen vacancies in the crystal lattice of the oxides. Subsequently, the effect of the Mg concentration, and thus the oxygen vacancies concentration, was studied. The titanium oxide-based catalysts were the most active, in terms of butane conversion and selectivity to butenes and 1,3 butadiene. Overall, this study shows that the formation of oxygen vacancies on metal oxides can be influenced by the addition of metallic Mg during the synthesis. In the case of TiO2, this leads to an increase on the activity compared to the untreated sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sustainable chemicals currently have a very limited market share due to current low production but biomass is expected to become one of the major renewable energy and fine chemicals sources in the coming years. Bearing in mind the compromise of all nations to climatic change remediation, the industries will need to use efficient catalysts and green processes to meet the requirements of emissions and efficiency. This project is expected to develop new catalysts to convert 1,6-hexanediol to adipic acid through a green approach based on the “nano-catalysis” and “green chemistry” concepts. Supported Au and Pd nanoparticles were used to study one-pot reaction of HDO oxidation to AA using O2 as a final oxidant and H2O as a solvent. Catalytic results showed that under low pressure O2 atmosphere and low temperature (< 120°C) AuNPs supported on basic-supports are more active than acid and amphoteric oxides. The effect of basic oxide (MgO) addition to MgF2 was studied. The study showed that doping of MgF2 with MgO increased significantly the activity of the catalyst. The best results were obtained with the Au/0.4MgF2-0.6MgO sample, which gave the selectivity to AA of 33% at HDO conversion of 62%.